BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 19913029)

  • 1. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function.
    Opefi CA; South K; Reynolds CA; Smith SO; Reeves PJ
    J Biol Chem; 2013 Nov; 288(47):33912-33926. PubMed ID: 24106275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinobenzaldehydes as proper-trafficking inducers of folding-defective P23H rhodopsin mutant responsible for retinitis pigmentosa.
    Ohgane K; Dodo K; Hashimoto Y
    Bioorg Med Chem; 2010 Oct; 18(19):7022-8. PubMed ID: 20805032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal.
    Noorwez SM; Sama RR; Kaushal S
    J Biol Chem; 2009 Nov; 284(48):33333-42. PubMed ID: 19801547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy.
    Mendes HF; van der Spuy J; Chapple JP; Cheetham ME
    Trends Mol Med; 2005 Apr; 11(4):177-85. PubMed ID: 15823756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin.
    Noorwez SM; Ostrov DA; McDowell JH; Krebs MP; Kaushal S
    Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):3224-30. PubMed ID: 18378578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misfolded rhodopsin mutants display variable aggregation properties.
    Gragg M; Park PS
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2938-2948. PubMed ID: 29890221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H.
    Noorwez SM; Malhotra R; McDowell JH; Smith KA; Krebs MP; Kaushal S
    J Biol Chem; 2004 Apr; 279(16):16278-84. PubMed ID: 14769795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inherent instability of the retinitis pigmentosa P23H mutant opsin.
    Chen Y; Jastrzebska B; Cao P; Zhang J; Wang B; Sun W; Yuan Y; Feng Z; Palczewski K
    J Biol Chem; 2014 Mar; 289(13):9288-303. PubMed ID: 24515108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinitis pigmentosa‑associated rhodopsin mutant T17M induces endoplasmic reticulum (ER) stress and sensitizes cells to ER stress-induced cell death.
    Jiang H; Xiong S; Xia X
    Mol Med Rep; 2014 May; 9(5):1737-42. PubMed ID: 24573320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RRH, encoding the RPE-expressed opsin-like peropsin, is not mutated in retinitis pigmentosa and allied diseases.
    Ksantini M; Sénéchal A; Humbert G; Arnaud B; Hamel CP
    Ophthalmic Genet; 2007 Mar; 28(1):31-7. PubMed ID: 17454745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural coupling of 11-cis-7-methyl-retinal and amino acids at the ligand binding pocket of rhodopsin.
    Aguilà M; Toledo D; Morillo M; Dominguez M; Vaz B; Alvarez R; de Lera AR; Garriga P
    Photochem Photobiol; 2009; 85(2):485-93. PubMed ID: 19267873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the retinitis pigmentosa mutations in rhodopsin with a functional map of the C5a receptor.
    Hagemann IS; Nikiforovich GV; Baranski TJ
    Vision Res; 2006 Dec; 46(27):4519-31. PubMed ID: 16962629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic
    Vent-Schmidt RYJ; Wen RH; Zong Z; Chiu CN; Tam BM; May CG; Moritz OL
    J Neurosci; 2017 Jan; 37(4):1039-1054. PubMed ID: 28490005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function.
    Hwa J; Reeves PJ; Klein-Seetharaman J; Davidson F; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1932-5. PubMed ID: 10051572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats.
    Bicknell IR; Darrow R; Barsalou L; Fliesler SJ; Organisciak DT
    Mol Vis; 2002 Sep; 8():333-40. PubMed ID: 12355060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.