These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19913160)

  • 1. Use of acoustic sensors to probe the mechanical properties of liposomes.
    Melzak K; Tsortos A; Gizeli E
    Methods Enzymol; 2009; 465():21-41. PubMed ID: 19913160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing mechanical properties of liposomes using acoustic sensors.
    Melzak KA; Bender F; Tsortos A; Gizeli E
    Langmuir; 2008 Aug; 24(16):9172-80. PubMed ID: 18642856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative activity of cholesterol in OPPC/cholesterol/sphingomyelin mixtures measured with an acoustic sensor.
    Melzak KA; Gizeli E
    Analyst; 2009 Mar; 134(3):609-14. PubMed ID: 19238301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance.
    Francis LA; Friedt JM; Zhou C; Bertrand P
    Anal Chem; 2006 Jun; 78(12):4200-9. PubMed ID: 16771551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water.
    Reimhult E; Larsson C; Kasemo B; Höök F
    Anal Chem; 2004 Dec; 76(24):7211-20. PubMed ID: 15595862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy.
    Liang X; Mao G; Ng KY
    J Colloid Interface Sci; 2004 Oct; 278(1):53-62. PubMed ID: 15313637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery.
    Maestrelli F; González-Rodríguez ML; Rabasco AM; Mura P
    Int J Pharm; 2006 Apr; 312(1-2):53-60. PubMed ID: 16469460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance.
    Ferreira GN; da-Silva AC; Tomé B
    Trends Biotechnol; 2009 Dec; 27(12):689-97. PubMed ID: 19853941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Randomly-methylated-beta-cyclodextrin effect on liposome: an ESR study.
    Grammenos A; Bahri MA; Guelluy PH; Piel G; Hoebeke M
    Biochem Biophys Res Commun; 2009 Dec; 390(1):5-9. PubMed ID: 19744466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Employing two different quartz crystal microbalance models to study changes in viscoelastic behavior upon transformation of lipid vesicles to a bilayer on a gold surface.
    Cho NJ; Kanazawa KK; Glenn JS; Frank CW
    Anal Chem; 2007 Sep; 79(18):7027-35. PubMed ID: 17685547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic modeling with interfacial slip of a protein monolayer electrode-adsorbed on an acoustic wave biosensor.
    Ellis JS; Thompson M
    Langmuir; 2010 Jul; 26(13):11558-67. PubMed ID: 20394431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges.
    Gronewold TM
    Anal Chim Acta; 2007 Nov; 603(2):119-28. PubMed ID: 17963831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposome characterization by quartz crystal microbalance measurements and atomic force microscopy.
    Vermette P
    Methods Enzymol; 2009; 465():43-73. PubMed ID: 19913161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of the acoustic spectrophonometer to biomolecular spectrometry: a step towards acoustic "fingerprinting".
    Stevenson AC; Araya-Kleinsteuber B; Sethi RS; Mehta HM; Lowe CR
    J Mol Recognit; 2004; 17(3):174-9. PubMed ID: 15137026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate.
    Ohvo H; Slotte JP
    Biochemistry; 1996 Jun; 35(24):8018-24. PubMed ID: 8672506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome layers characterized by quartz crystal microbalance measurements and multirelease delivery.
    Brochu H; Vermette P
    Langmuir; 2007 Jul; 23(14):7679-86. PubMed ID: 17547426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AFM study of the stability of a dense affinity-bound liposome layer.
    Tarasova A; Griesser HJ; Meagher L
    Langmuir; 2008 Jul; 24(14):7371-7. PubMed ID: 18547080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically induced deformation of giant liposomes monitored by thickness shear mode resonators.
    Sapper A; Janshoff A
    Langmuir; 2006 Dec; 22(26):10869-73. PubMed ID: 17154553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.