These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 19913165)
1. Microfluidic methods for production of liposomes. Yu B; Lee RJ; Lee LJ Methods Enzymol; 2009; 465():129-41. PubMed ID: 19913165 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic directed formation of liposomes of controlled size. Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes. Han JY; La Fiandra JN; DeVoe DL Nat Commun; 2022 Nov; 13(1):6997. PubMed ID: 36384946 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Hood RR; Shao C; Omiatek DM; Vreeland WN; DeVoe DL Pharm Res; 2013 Jun; 30(6):1597-607. PubMed ID: 23386106 [TBL] [Abstract][Full Text] [Related]
6. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies. Naghib SM; Mohammad-Jafari K Curr Top Med Chem; 2024; 24(14):1185-1211. PubMed ID: 38424436 [TBL] [Abstract][Full Text] [Related]
7. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. Jahn A; Vreeland WN; Gaitan M; Locascio LE J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. Gkionis L; Aojula H; Harris LK; Tirella A Int J Pharm; 2021 Jul; 604():120711. PubMed ID: 34015381 [TBL] [Abstract][Full Text] [Related]
9. High throughput microfluidics-based synthesis of PEGylated liposomes for precise size control and efficient drug encapsulation. Akar S; Fardindoost S; Hoorfar M Colloids Surf B Biointerfaces; 2024 Jun; 238():113926. PubMed ID: 38677154 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. Mehraji S; DeVoe DL Lab Chip; 2024 Feb; 24(5):1154-1174. PubMed ID: 38165786 [TBL] [Abstract][Full Text] [Related]
11. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. Forbes N; Hussain MT; Briuglia ML; Edwards DP; Horst JHT; Szita N; Perrie Y Int J Pharm; 2019 Feb; 556():68-81. PubMed ID: 30503269 [TBL] [Abstract][Full Text] [Related]
12. Microfluidics: a transformational tool for nanomedicine development and production. Garg S; Heuck G; Ip S; Ramsay E J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254 [TBL] [Abstract][Full Text] [Related]
13. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Sedighi M; Sieber S; Rahimi F; Shahbazi MA; Rezayan AH; Huwyler J; Witzigmann D Drug Deliv Transl Res; 2019 Feb; 9(1):404-413. PubMed ID: 30306459 [TBL] [Abstract][Full Text] [Related]
14. Scalable Liposome Synthesis by High Aspect Ratio Microfluidic Flow Focusing. Han JY; Chen Z; Devoe DL Methods Mol Biol; 2023; 2622():87-93. PubMed ID: 36781752 [TBL] [Abstract][Full Text] [Related]
15. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach. Zizzari A; Bianco M; Carbone L; Perrone E; Amato F; Maruccio G; Rendina F; Arima V Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29232873 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Jaradat E; Weaver E; Meziane A; Lamprou DA Int J Pharm; 2022 Nov; 628():122320. PubMed ID: 36272514 [TBL] [Abstract][Full Text] [Related]
17. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Xu R; Tomeh MA; Ye S; Zhang P; Lv S; You R; Wang N; Zhao X Int J Pharm; 2022 Jun; 622():121857. PubMed ID: 35623489 [TBL] [Abstract][Full Text] [Related]
18. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation. Kotouček J; Hubatka F; Mašek J; Kulich P; Velínská K; Bezděková J; Fojtíková M; Bartheldyová E; Tomečková A; Stráská J; Hrebík D; Macaulay S; Kratochvílová I; Raška M; Turánek J Sci Rep; 2020 Mar; 10(1):5595. PubMed ID: 32221374 [TBL] [Abstract][Full Text] [Related]
19. A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: Formulation, cellular uptake and biodistribution investigations. Lou G; Anderluzzi G; Woods S; Roberts CW; Perrie Y Eur J Pharm Biopharm; 2019 Oct; 143():51-60. PubMed ID: 31445156 [TBL] [Abstract][Full Text] [Related]
20. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Kastner E; Kaur R; Lowry D; Moghaddam B; Wilkinson A; Perrie Y Int J Pharm; 2014 Dec; 477(1-2):361-8. PubMed ID: 25455778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]