These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 19913227)
1. Primary stability of uncemented femoral resurfacing implants for varying interface parameters and material formulations during walking and stair climbing. Rothstock S; Uhlenbrock A; Bishop N; Morlock M J Biomech; 2010 Feb; 43(3):521-6. PubMed ID: 19913227 [TBL] [Abstract][Full Text] [Related]
2. Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. Kassi JP; Heller MO; Stoeckle U; Perka C; Duda GN J Biomech; 2005 May; 38(5):1143-54. PubMed ID: 15797595 [TBL] [Abstract][Full Text] [Related]
3. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses]. Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433 [TBL] [Abstract][Full Text] [Related]
4. Influence of press-fit parameters on the primary stability of uncemented femoral resurfacing implants. Gebert A; Peters J; Bishop NE; Westphal F; Morlock MM Med Eng Phys; 2009 Jan; 31(1):160-4. PubMed ID: 18534896 [TBL] [Abstract][Full Text] [Related]
5. Primary stability of an anatomical cementless hip stem: a statistical analysis. Viceconti M; Brusi G; Pancanti A; Cristofolini L J Biomech; 2006; 39(7):1169-79. PubMed ID: 15927191 [TBL] [Abstract][Full Text] [Related]
6. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur. Pal B; Gupta S Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739 [TBL] [Abstract][Full Text] [Related]
7. Bone remodelling inside a cemented resurfaced femoral head. Gupta S; New AM; Taylor M Clin Biomech (Bristol); 2006 Jul; 21(6):594-602. PubMed ID: 16542761 [TBL] [Abstract][Full Text] [Related]
8. Influence of interface condition and implant design on bone remodelling and failure risk for the resurfaced femoral head. Rothstock S; Uhlenbrock A; Bishop N; Laird L; Nassutt R; Morlock M J Biomech; 2011 Jun; 44(9):1646-53. PubMed ID: 21511258 [TBL] [Abstract][Full Text] [Related]
9. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method. Andreaus U; Colloca M Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912 [TBL] [Abstract][Full Text] [Related]
10. Probabilistic finite element analysis of the uncemented hip replacement--effect of femur characteristics and implant design geometry. Dopico-González C; New AM; Browne M J Biomech; 2010 Feb; 43(3):512-20. PubMed ID: 19896129 [TBL] [Abstract][Full Text] [Related]
11. In vitro measurement of strain in the bone cement surrounding the femoral component of total hip replacements during simulated gait and stair-climbing. O'Connor DO; Burke DW; Jasty M; Sedlacek RC; Harris WH J Orthop Res; 1996 Sep; 14(5):769-77. PubMed ID: 8893771 [TBL] [Abstract][Full Text] [Related]
12. Subject specific finite element analysis of implant stability for a cementless femoral stem. Pettersen SH; Wik TS; Skallerud B Clin Biomech (Bristol); 2009 Jul; 24(6):480-7. PubMed ID: 19368993 [TBL] [Abstract][Full Text] [Related]
13. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty. Cheal EJ; Spector M; Hayes WC J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504 [TBL] [Abstract][Full Text] [Related]
14. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis]. Massin P; Astoin E; Lavaste F Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057 [TBL] [Abstract][Full Text] [Related]
15. Finite element analysis of shear stresses at the implant-bone interface of an acetabular press-fit cup during impingement. Voigt C; Klöhn C; Bader R; von Salis-Soglio G; Scholz R Biomed Tech (Berl); 2007 Apr; 52(2):208-15. PubMed ID: 17408381 [TBL] [Abstract][Full Text] [Related]
16. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions. Chong DY; Hansen UN; Amis AA J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576 [TBL] [Abstract][Full Text] [Related]
17. Strain adaptive bone remodelling: influence of the implantation technique. Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011 [TBL] [Abstract][Full Text] [Related]
18. Load-shift--numerical evaluation of a new design philosophy for uncemented hip prostheses. Goetzen N; Lampe F; Nassut R; Morlock MM J Biomech; 2005 Mar; 38(3):595-604. PubMed ID: 15652559 [TBL] [Abstract][Full Text] [Related]
19. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling. Pal B; Gupta S; New AM Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837 [TBL] [Abstract][Full Text] [Related]
20. Influence of the change in stem length on the load transfer and bone remodelling for a cemented resurfaced femur. Pal B; Gupta S; New AM J Biomech; 2010 Nov; 43(15):2908-14. PubMed ID: 20728891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]