These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19913433)

  • 1. Detection of chemical explosives using multiple photon signatures.
    Loschke KW; Dunn WL
    Appl Radiat Isot; 2010; 68(4-5):884-7. PubMed ID: 19913433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signature-based radiation scanning using radiation interrogation to detect explosives.
    Lowrey JD; Dunn WL
    Appl Radiat Isot; 2010; 68(4-5):893-5. PubMed ID: 20122840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices.
    Brewer RL; Dunn WL; Heider S; Matthew C; Yang X
    Appl Radiat Isot; 2012 Jul; 70(7):1181-5. PubMed ID: 22138023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry.
    Lai H; Guerra P; Joshi M; Almirall JR
    J Sep Sci; 2008 Feb; 31(2):402-12. PubMed ID: 18196520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and mapping of trace explosives on surfaces under ambient conditions using multiphoton electron extraction spectroscopy (MEES).
    Tang S; Vinerot N; Fisher D; Bulatov V; Yavetz-Chen Y; Schechter I
    Talanta; 2016 Aug; 155():235-44. PubMed ID: 27216679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman chemical imaging of explosive-contaminated fingerprints.
    Emmons ED; Tripathi A; Guicheteau JA; Christesen SD; Fountain AW
    Appl Spectrosc; 2009 Nov; 63(11):1197-203. PubMed ID: 19891827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence.
    Wynn CM; Palmacci S; Kunz RR; Rothschild M
    Opt Express; 2010 Mar; 18(6):5399-406. PubMed ID: 20389555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid electrochemical-colorimetric sensing platform for detection of explosives.
    Forzani ES; Lu D; Leright MJ; Aguilar AD; Tsow F; Iglesias RA; Zhang Q; Lu J; Li J; Tao N
    J Am Chem Soc; 2009 Feb; 131(4):1390-1. PubMed ID: 19173664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signature detection and matching for document image retrieval.
    Zhu G; Zheng Y; Doermann D; Jaeger S
    IEEE Trans Pattern Anal Mach Intell; 2009 Nov; 31(11):2015-31. PubMed ID: 19762928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luggage and shipped goods.
    Vogel H; Haller D
    Eur J Radiol; 2007 Aug; 63(2):242-53. PubMed ID: 17646075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.
    Petterson IE; López-López M; García-Ruiz C; Gooijer C; Buijs JB; Ariese F
    Anal Chem; 2011 Nov; 83(22):8517-23. PubMed ID: 21967622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current trends in explosive detection techniques.
    Caygill JS; Davis F; Higson SP
    Talanta; 2012 Jan; 88():14-29. PubMed ID: 22265465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic sensor devices for explosive detection.
    Willer U; Schade W
    Anal Bioanal Chem; 2009 Sep; 395(2):275-82. PubMed ID: 19597802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable, rapid and simple voltammetric detection of urea nitrate explosive.
    Cagan A; Lu D; Cizek K; La Belle J; Wang J
    Analyst; 2008 May; 133(5):585-7. PubMed ID: 18427677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributed review: quantum cascade laser based photoacoustic detection of explosives.
    Li JS; Yu B; Fischer H; Chen W; Yalin AP
    Rev Sci Instrum; 2015 Mar; 86(3):031501. PubMed ID: 25832204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging.
    Izake EL; Sundarajoo S; Olds W; Cletus B; Jaatinen E; Fredericks PM
    Talanta; 2013 Jan; 103():20-7. PubMed ID: 23200353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary screening of biomimetic coatings for selective detection of explosives.
    Jaworski JW; Raorane D; Huh JH; Majumdar A; Lee SW
    Langmuir; 2008 May; 24(9):4938-43. PubMed ID: 18363413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.