BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19913484)

  • 1. Ligand migration and cavities within Scapharca Dimeric HbI: studies by time-resolved crystallo-graphy, Xe binding, and computational analysis.
    Knapp JE; Pahl R; Cohen J; Nichols JC; Schulten K; Gibson QH; Srajer V; Royer WE
    Structure; 2009 Nov; 17(11):1494-504. PubMed ID: 19913484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis.
    Nienhaus K; Knapp JE; Palladino P; Royer WE; Nienhaus GU
    Biochemistry; 2007 Dec; 46(49):14018-31. PubMed ID: 18001141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary and quaternary allostery in tetrameric hemoglobin from Scapharca inaequivalvis.
    Ronda L; Bettati S; Henry ER; Kashav T; Sanders JM; Royer WE; Mozzarelli A
    Biochemistry; 2013 Mar; 52(12):2108-17. PubMed ID: 23458680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-linked structural transitions in crystals of a cooperative dimeric hemoglobin.
    Knapp JE; Royer WE
    Biochemistry; 2003 Apr; 42(16):4640-7. PubMed ID: 12705827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand binding and conformation change in the dimeric hemoglobin of the clam Scapharca inaequivalvis.
    Chiancone E; Elber R; Royer WE; Regan R; Gibson QH
    J Biol Chem; 1993 Mar; 268(8):5711-8. PubMed ID: 8449933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin.
    Knapp JE; Bonham MA; Gibson QH; Nichols JC; Royer WE
    Biochemistry; 2005 Nov; 44(44):14419-30. PubMed ID: 16262242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dynamics of the heme pocket and intersubunit coupling in the dimeric hemoglobin from Scapharca inaequivalvis.
    Gao X; Mizuno M; Ishikawa H; Muniyappan S; Ihee H; Mizutani Y
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geminate rebinding in R-state hemoglobin: kinetic and computational evidence for multiple hydrophobic pockets.
    Sottini S; Abbruzzetti S; Spyrakis F; Bettati S; Ronda L; Mozzarelli A; Viappiani C
    J Am Chem Soc; 2005 Dec; 127(49):17427-32. PubMed ID: 16332093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the allosteric mechanism of Scapharca dimeric hemoglobin.
    Laine JM; Amat M; Morgan BR; Royer WE; Massi F
    Biochemistry; 2014 Nov; 53(46):7199-210. PubMed ID: 25356908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric action in real time: time-resolved crystallographic studies of a cooperative dimeric hemoglobin.
    Knapp JE; Pahl R; Srajer V; Royer WE
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7649-54. PubMed ID: 16684887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction at a distance: Xenon migration in Mb.
    Turan HT; Boittier E; Meuwly M
    J Chem Phys; 2023 Mar; 158(12):125103. PubMed ID: 37003761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of ligand migration within human hemoglobin at work.
    Shibayama N; Sato-Tomita A; Ohki M; Ichiyanagi K; Park SY
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4741-4748. PubMed ID: 32071219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of cyanide binding to ferrous Scapharca inaequivalvis homodimeric hemoglobin.
    Boffi A; Chiancone E; Peterson ES; Wang J; Rousseau DL; Friedman JM
    Biochemistry; 1997 Apr; 36(15):4510-4. PubMed ID: 9109659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of oxygenated Scapharca dimeric hemoglobin at 1.7-A resolution.
    Condon PJ; Royer WE
    J Biol Chem; 1994 Oct; 269(41):25259-67. PubMed ID: 7929217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution crystallographic analysis of a co-operative dimeric hemoglobin.
    Royer WE
    J Mol Biol; 1994 Jan; 235(2):657-81. PubMed ID: 8289287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locating and Navigating Energy Transport Networks in Proteins.
    Reid KM; Leitner DM
    Methods Mol Biol; 2021; 2253():37-59. PubMed ID: 33315217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single mutation (Thr72-->Ile) at the subunit interface is crucial for the functional properties of the homodimeric co-operative haemoglobin from Scapharca inaequivalvis.
    Gambacurta A; Piro MC; Coletta M; Clementi ME; Polizio F; Desideri A; Santucci R; Ascoli F
    J Mol Biol; 1995 May; 248(5):910-7. PubMed ID: 7760332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mutations on the molecular dynamics of oxygen escape from the dimeric hemoglobin of Scapharca inaequivalvis.
    Trujillo K; Papagiannopoulos T; Olsen KW
    F1000Res; 2015; 4():65. PubMed ID: 25866622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended molecular dynamics simulation of the carbon monoxide migration in sperm whale myoglobin.
    Bossa C; Anselmi M; Roccatano D; Amadei A; Vallone B; Brunori M; Di Nola A
    Biophys J; 2004 Jun; 86(6):3855-62. PubMed ID: 15189882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating distal cavities in the α and β subunits of human HbA reveals the primary ligand migration pathway.
    Birukou I; Maillett DH; Birukova A; Olson JS
    Biochemistry; 2011 Aug; 50(34):7361-74. PubMed ID: 21793487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.