These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 19913486)
21. Computational methods for protein secondary structure prediction using multiple sequence alignments. Heringa J Curr Protein Pept Sci; 2000 Nov; 1(3):273-301. PubMed ID: 12369910 [TBL] [Abstract][Full Text] [Related]
22. A hybrid genetic-neural system for predicting protein secondary structure. Armano G; Mancosu G; Milanesi L; Orro A; Saba M; Vargiu E BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S3. PubMed ID: 16351752 [TBL] [Abstract][Full Text] [Related]
23. Deep-learning contact-map guided protein structure prediction in CASP13. Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149 [TBL] [Abstract][Full Text] [Related]
24. HYPLOSP: a knowledge-based approach to protein local structure prediction. Chen CT; Lin HN; Sung TY; Hsu WL J Bioinform Comput Biol; 2006 Dec; 4(6):1287-307. PubMed ID: 17245815 [TBL] [Abstract][Full Text] [Related]
25. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11. Zhang W; Yang J; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):76-86. PubMed ID: 26370505 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. Bagos PG; Liakopoulos TD; Hamodrakas SJ BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112 [TBL] [Abstract][Full Text] [Related]
27. Protein structure prediction enhanced with evolutionary diversity: SPEED. DeBartolo J; Hocky G; Wilde M; Xu J; Freed KF; Sosnick TR Protein Sci; 2010 Mar; 19(3):520-34. PubMed ID: 20066664 [TBL] [Abstract][Full Text] [Related]
28. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments. Zheng C; Kurgan L BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492 [TBL] [Abstract][Full Text] [Related]
29. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Hou J; Wu T; Cao R; Cheng J Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027 [TBL] [Abstract][Full Text] [Related]
30. Functional inferences from blind ab initio protein structure predictions. Bonneau R; Tsai J; Ruczinski I; Baker D J Struct Biol; 2001; 134(2-3):186-90. PubMed ID: 11551178 [TBL] [Abstract][Full Text] [Related]
31. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model. Liu Y; Beveridge DL Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709 [TBL] [Abstract][Full Text] [Related]
32. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Zhang C; Mortuza SM; He B; Wang Y; Zhang Y Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551 [TBL] [Abstract][Full Text] [Related]
33. CNNcon: improved protein contact maps prediction using cascaded neural networks. Ding W; Xie J; Dai D; Zhang H; Xie H; Zhang W PLoS One; 2013; 8(4):e61533. PubMed ID: 23626696 [TBL] [Abstract][Full Text] [Related]
34. Accurate prediction of protein torsion angles using chemical shifts and sequence homology. Neal S; Berjanskii M; Zhang H; Wishart DS Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900 [TBL] [Abstract][Full Text] [Related]
35. Prediction of the three-dimensional structure of proteins using the electrostatic screening model and hierarchic condensation. Avbelj F; Fele L Proteins; 1998 Apr; 31(1):74-96. PubMed ID: 9552160 [TBL] [Abstract][Full Text] [Related]
36. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Klepeis JL; Wei Y; Hecht MH; Floudas CA Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306 [TBL] [Abstract][Full Text] [Related]
37. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks. Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134 [TBL] [Abstract][Full Text] [Related]
38. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction. Cretin G; Galochkina T; de Brevern AG; Gelly JC Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445537 [TBL] [Abstract][Full Text] [Related]
39. SPOT-Fold: Fragment-Free Protein Structure Prediction Guided by Predicted Backbone Structure and Contact Map. Cai Y; Li X; Sun Z; Lu Y; Zhao H; Hanson J; Paliwal K; Litfin T; Zhou Y; Yang Y J Comput Chem; 2020 Mar; 41(8):745-750. PubMed ID: 31845383 [TBL] [Abstract][Full Text] [Related]
40. Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bystroff C; Shao Y Bioinformatics; 2002; 18 Suppl 1():S54-61. PubMed ID: 12169531 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]