BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19913543)

  • 1. Altered sphingolipid metabolism induced by tumor hypoxia - new vistas in glycolipid tumor markers.
    Yin J; Miyazaki K; Shaner RL; Merrill AH; Kannagi R
    FEBS Lett; 2010 May; 584(9):1872-8. PubMed ID: 19913543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia.
    Melland-Smith M; Ermini L; Chauvin S; Craig-Barnes H; Tagliaferro A; Todros T; Post M; Caniggia I
    Autophagy; 2015 Apr; 11(4):653-69. PubMed ID: 25853898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: clues in the ongoing search for new tumor markers.
    Kannagi R; Sakuma K; Miyazaki K; Lim KT; Yusa A; Yin J; Izawa M
    Cancer Sci; 2010 Mar; 101(3):586-93. PubMed ID: 20085584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingolipids in inflammatory hypoxia.
    Glaser UG; Fandrey J
    Biol Chem; 2018 Sep; 399(10):1169-1174. PubMed ID: 29908122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mass spectrometry-based method for the assay of ceramide synthase substrate specificity.
    Luttgeharm KD; Cahoon EB; Markham JE
    Anal Biochem; 2015 Jun; 478():96-101. PubMed ID: 25725359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting expression of glycolipid tumor antigens: influence of ceramide composition and coexisting glycolipid on the antigenicity of gangliotriaosylceramide in murine lymphoma cells.
    Kannagi R; Stroup R; Cochran NA; Urdal DL; Young WW; Hakomori S
    Cancer Res; 1983 Oct; 43(10):4997-5005. PubMed ID: 6860431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipid targets in cancer therapy.
    Modrak DE; Gold DV; Goldenberg DM
    Mol Cancer Ther; 2006 Feb; 5(2):200-8. PubMed ID: 16505092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of neutral sphingolipids and gangliosides from chicken liver.
    Shiraishi T; Uda Y
    J Biochem; 1986 Sep; 100(3):553-61. PubMed ID: 3782065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of mass spectrometry for the carbohydrate composition and sequence analysis of glycosphingolipids.
    Karlsson KA; Pascher I; Pimlott W; Samuelsson BE
    Biomed Mass Spectrom; 1974 Feb; 1(1):49-56. PubMed ID: 4433715
    [No Abstract]   [Full Text] [Related]  

  • 10. Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction.
    Hadas Y; Vincek AS; Youssef E; Żak MM; Chepurko E; Sultana N; Sharkar MTK; Guo N; Komargodski R; Kurian AA; Kaur K; Magadum A; Fargnoli A; Katz MG; Hossain N; Kenigsberg E; Dubois NC; Schadt E; Hajjar R; Eliyahu E; Zangi L
    Circulation; 2020 Mar; 141(11):916-930. PubMed ID: 31992066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of sphingolipids from sunflower seeds with altered fatty acid composition.
    Salas JJ; Markham JE; Martínez-Force E; Garcés R
    J Agric Food Chem; 2011 Dec; 59(23):12486-92. PubMed ID: 22034947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism.
    Cahoon RE; Solis AG; Markham JE; Cahoon EB
    Methods Mol Biol; 2021; 2295():157-177. PubMed ID: 34047977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish.
    Zhang T; Trauger SA; Vidoudez C; Doane KP; Pluimer BR; Peterson RT
    Sci Rep; 2019 Dec; 9(1):19939. PubMed ID: 31882772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingolipids in neurodegeneration (with focus on ceramide and S1P).
    Wang G; Bieberich E
    Adv Biol Regul; 2018 Dec; 70():51-64. PubMed ID: 30287225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipid metabolism in Bacteroideaceae.
    Stoffel W; Dittmar K; Wilmes R
    Hoppe Seylers Z Physiol Chem; 1975 Jun; 356(6):715-25. PubMed ID: 1181270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of major glycolipids in bovine erythrocyte membrane.
    Uemura K; Yuzawa M; Taketomi T
    J Biochem; 1978 Feb; 83(2):463-71. PubMed ID: 564898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry.
    Sullards MC; Wang E; Peng Q; Merrill AH
    Cell Mol Biol (Noisy-le-grand); 2003 Jul; 49(5):789-97. PubMed ID: 14528916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monogenic neurological disorders of sphingolipid metabolism.
    Sabourdy F; Astudillo L; Colacios C; Dubot P; Mrad M; Ségui B; Andrieu-Abadie N; Levade T
    Biochim Biophys Acta; 2015 Aug; 1851(8):1040-51. PubMed ID: 25660725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals.
    Edagawa M; Sawai M; Ohno Y; Kihara A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1441-1448. PubMed ID: 30251650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolipid changes in murine myelogenous leukemias: neutral glycolipids as markers for specific populations of leukemias.
    Ariga T; Yoshida K; Nemoto K; Seki M; Miyatani N; Yu RK
    Biochemistry; 1991 Aug; 30(32):7953-61. PubMed ID: 1868069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.