BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 19913573)

  • 1. The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data.
    Albrecht J; Kopietz R; Frasnelli J; Wiesmann M; Hummel T; Lundström JN
    Brain Res Rev; 2010 Mar; 62(2):183-96. PubMed ID: 19913573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-modal integration of intranasal stimuli: a functional magnetic resonance imaging study.
    Boyle JA; Frasnelli J; Gerber J; Heinke M; Hummel T
    Neuroscience; 2007 Oct; 149(1):223-31. PubMed ID: 17869005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral activation to intranasal chemosensory trigeminal stimulation.
    Boyle JA; Heinke M; Gerber J; Frasnelli J; Hummel T
    Chem Senses; 2007 May; 32(4):343-53. PubMed ID: 17308328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PET-based investigation of cerebral activation following intranasal trigeminal stimulation.
    Hummel T; Oehme L; van den Hoff J; Gerber J; Heinke M; Boyle JA; Beuthien-Baumann B
    Hum Brain Mapp; 2009 Apr; 30(4):1100-4. PubMed ID: 18412096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pepper with and without a sting: Brain processing of intranasal trigeminal and olfactory stimuli from the same source.
    Han P; Mann S; Raue C; Warr J; Hummel T
    Brain Res; 2018 Dec; 1700():41-46. PubMed ID: 30006292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty.
    Eickhoff SB; Laird AR; Grefkes C; Wang LE; Zilles K; Fox PT
    Hum Brain Mapp; 2009 Sep; 30(9):2907-26. PubMed ID: 19172646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI-based Neuronal Response to New Odorants in the Newborn Brain.
    Adam-Darque A; Grouiller F; Vasung L; Ha-Vinh Leuchter R; Pollien P; Lazeyras F; Hüppi PS
    Cereb Cortex; 2018 Aug; 28(8):2901-2907. PubMed ID: 29106509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central encoding of the strength of intranasal chemosensory trigeminal stimuli in a human experimental pain setting.
    Lötsch J; Oertel BG; Felden L; Nöth U; Deichmann R; Hummel T; Walter C
    Hum Brain Mapp; 2020 Dec; 41(18):5240-5254. PubMed ID: 32870583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localizing the human brain response to olfactory stimulation: A meta-analytic approach.
    Torske A; Koch K; Eickhoff S; Freiherr J
    Neurosci Biobehav Rev; 2022 Mar; 134():104512. PubMed ID: 34968523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain.
    Amanzio M; Benedetti F; Porro CA; Palermo S; Cauda F
    Hum Brain Mapp; 2013 Mar; 34(3):738-52. PubMed ID: 22125184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human operculo-insular cortex is pain-preferentially but not pain-exclusively activated by trigeminal and olfactory stimuli.
    Lötsch J; Walter C; Felden L; Nöth U; Deichmann R; Oertel BG
    PLoS One; 2012; 7(4):e34798. PubMed ID: 22496865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic intranasal chemosensory brain networks shown by resting-state functional MRI.
    Tobia MJ; Yang QX; Karunanayaka P
    Neuroreport; 2016 May; 27(7):527-31. PubMed ID: 27031873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of pain-related brain activation: a meta-analysis of neuroimaging data.
    Duerden EG; Albanese MC
    Hum Brain Mapp; 2013 Jan; 34(1):109-49. PubMed ID: 22131304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human olfactory lateralization requires trigeminal activation.
    Croy I; Schulz M; Blumrich A; Hummel C; Gerber J; Hummel T
    Neuroimage; 2014 Sep; 98():289-95. PubMed ID: 24825502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central processing of trigeminal activation in humans.
    Hummel T; Iannilli E; Frasnelli J; Boyle J; Gerber J
    Ann N Y Acad Sci; 2009 Jul; 1170():190-5. PubMed ID: 19686136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociated representations of pleasant and unpleasant olfacto-trigeminal mixtures: an FMRI study.
    Bensafi M; Iannilli E; Poncelet J; Seo HS; Gerber J; Rouby C; Hummel T
    PLoS One; 2012; 7(6):e38358. PubMed ID: 22701631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of brain activation by odorants in humans.
    Savic I
    Curr Opin Neurobiol; 2002 Aug; 12(4):455-61. PubMed ID: 12139995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional mapping of human brain in olfactory processing: a PET study.
    Qureshy A; Kawashima R; Imran MB; Sugiura M; Goto R; Okada K; Inoue K; Itoh M; Schormann T; Zilles K; Fukuda H
    J Neurophysiol; 2000 Sep; 84(3):1656-66. PubMed ID: 10980035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential activation of the human trigeminal nuclear complex by noxious and non-noxious orofacial stimulation.
    Nash PG; Macefield VG; Klineberg IJ; Murray GM; Henderson LA
    Hum Brain Mapp; 2009 Nov; 30(11):3772-82. PubMed ID: 19492300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study.
    Litaudon P; Bouillot C; Zimmer L; Costes N; Ravel N
    Brain Struct Funct; 2017 Jan; 222(1):577-586. PubMed ID: 27194619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.