BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 19913692)

  • 21. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain.
    Tsavkelova EA; Bömke C; Netrusov AI; Weiner J; Tudzynski B
    Fungal Genet Biol; 2008 Oct; 45(10):1393-403. PubMed ID: 18694840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.
    Zhang Y; Choi YE; Zou X; Xu JR
    Fungal Genet Biol; 2011 Feb; 48(2):71-9. PubMed ID: 20887797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel MFS transporter encoding gene in Fusarium verticillioides probably involved in iron-siderophore transport.
    López-Errasquín E; González-Jaén MT; Callejas C; Vázquez C
    Mycol Res; 2006 Sep; 110(Pt 9):1102-10. PubMed ID: 16938445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species.
    Stępień L; Koczyk G; Waśkiewicz A
    J Appl Genet; 2011 Nov; 52(4):487-96. PubMed ID: 21796391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A loop-mediated isothermal amplification (LAMP) based assay for the rapid and sensitive group-specific detection of fumonisin producing Fusarium spp.
    Wigmann ÉF; Meyer K; Cendoya E; Maul R; Vogel RF; Niessen L
    Int J Food Microbiol; 2020 Jul; 325():108627. PubMed ID: 32334331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fusarium proliferatum - Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production.
    Gálvez L; Urbaniak M; Waśkiewicz A; Stępień Ł; Palmero D
    Food Microbiol; 2017 Oct; 67():41-48. PubMed ID: 28648292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of genes associated with fumonisin biosynthesis in Fusarium verticillioides via proteomics and quantitative real-time PCR.
    Choi YE; Shim WB
    J Microbiol Biotechnol; 2008 Apr; 18(4):648-57. PubMed ID: 18467856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reducing production of fumonisin mycotoxins in Fusarium verticillioides by RNA interference.
    Johnson ET; Proctor RH; Dunlap CA; Busman M
    Mycotoxin Res; 2018 Mar; 34(1):29-37. PubMed ID: 29164518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity.
    Wulff EG; Sørensen JL; Lübeck M; Nielsen KF; Thrane U; Torp J
    Environ Microbiol; 2010 Mar; 12(3):649-57. PubMed ID: 20002135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-Time RT-PCR assay to quantify the expression of fum1 and fum19 genes from the Fumonisin-producing Fusarium verticillioides.
    López-Errasquín E; Vázquez C; Jiménez M; González-Jaén MT
    J Microbiol Methods; 2007 Feb; 68(2):312-7. PubMed ID: 17055092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic analysis of Fusarium verticillioides.
    Brown DW; Butchko RA; Proctor RH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Sep; 25(9):1158-65. PubMed ID: 19238625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum.
    Kohut G; Adám AL; Fazekas B; Hornok L
    Int J Food Microbiol; 2009 Mar; 130(1):65-9. PubMed ID: 19181411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity of pea-associated F. proliferatum and F. verticillioides populations revealed by FUM1 sequence analysis and fumonisin biosynthesis.
    Waśkiewicz A; Stępień L; Wilman K; Kachlicki P
    Toxins (Basel); 2013 Mar; 5(3):488-503. PubMed ID: 23470545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential effects of environmental conditions on the efficiency of the antifungal tebuconazole controlling Fusarium verticillioides and Fusarium proliferatum growth rate and fumonisin biosynthesis.
    Marín P; de Ory A; Cruz A; Magan N; González-Jaén MT
    Int J Food Microbiol; 2013 Aug; 165(3):251-8. PubMed ID: 23800737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa.
    Fandohan P; Gnonlonfin B; Hell K; Marasas WF; Wingfield MJ
    Int J Food Microbiol; 2005 Mar; 99(2):173-83. PubMed ID: 15734565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production.
    Brown DW; Butchko RA; Busman M; Proctor RH
    Eukaryot Cell; 2007 Jul; 6(7):1210-8. PubMed ID: 17483290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maize (Zea mays L.) genetic factors for preventing fumonisin contamination.
    Butrón A; Santiago R; Mansilla P; Pintos-Varela C; Ordas A; Malvar RA
    J Agric Food Chem; 2006 Aug; 54(16):6113-7. PubMed ID: 16881725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contamination of pine nuts by fumonisin produced by strains of Fusarium proliferatum isolated from Pinus pinea.
    Marín S; Ramos AJ; Vázquez C; Sanchis V
    Lett Appl Microbiol; 2007 Jan; 44(1):68-72. PubMed ID: 17209817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize.
    Jurado M; Vázquez C; Marín S; Sanchis V; Teresa González-Jaén M
    Syst Appl Microbiol; 2006 Dec; 29(8):681-9. PubMed ID: 16513314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum.
    Desjardins AE; Busman M; Proctor RH; Stessman R
    Food Addit Contam; 2007 Oct; 24(10):1131-7. PubMed ID: 17886185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.