These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 19913692)
21. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Tsavkelova EA; Bömke C; Netrusov AI; Weiner J; Tudzynski B Fungal Genet Biol; 2008 Oct; 45(10):1393-403. PubMed ID: 18694840 [TBL] [Abstract][Full Text] [Related]
22. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides. Zhang Y; Choi YE; Zou X; Xu JR Fungal Genet Biol; 2011 Feb; 48(2):71-9. PubMed ID: 20887797 [TBL] [Abstract][Full Text] [Related]
23. A novel MFS transporter encoding gene in Fusarium verticillioides probably involved in iron-siderophore transport. López-Errasquín E; González-Jaén MT; Callejas C; Vázquez C Mycol Res; 2006 Sep; 110(Pt 9):1102-10. PubMed ID: 16938445 [TBL] [Abstract][Full Text] [Related]
24. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. Stępień L; Koczyk G; Waśkiewicz A J Appl Genet; 2011 Nov; 52(4):487-96. PubMed ID: 21796391 [TBL] [Abstract][Full Text] [Related]
25. A loop-mediated isothermal amplification (LAMP) based assay for the rapid and sensitive group-specific detection of fumonisin producing Fusarium spp. Wigmann ÉF; Meyer K; Cendoya E; Maul R; Vogel RF; Niessen L Int J Food Microbiol; 2020 Jul; 325():108627. PubMed ID: 32334331 [TBL] [Abstract][Full Text] [Related]
26. Fusarium proliferatum - Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production. Gálvez L; Urbaniak M; Waśkiewicz A; Stępień Ł; Palmero D Food Microbiol; 2017 Oct; 67():41-48. PubMed ID: 28648292 [TBL] [Abstract][Full Text] [Related]
27. Identification of genes associated with fumonisin biosynthesis in Fusarium verticillioides via proteomics and quantitative real-time PCR. Choi YE; Shim WB J Microbiol Biotechnol; 2008 Apr; 18(4):648-57. PubMed ID: 18467856 [TBL] [Abstract][Full Text] [Related]
28. Reducing production of fumonisin mycotoxins in Fusarium verticillioides by RNA interference. Johnson ET; Proctor RH; Dunlap CA; Busman M Mycotoxin Res; 2018 Mar; 34(1):29-37. PubMed ID: 29164518 [TBL] [Abstract][Full Text] [Related]
29. Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Wulff EG; Sørensen JL; Lübeck M; Nielsen KF; Thrane U; Torp J Environ Microbiol; 2010 Mar; 12(3):649-57. PubMed ID: 20002135 [TBL] [Abstract][Full Text] [Related]
30. Real-Time RT-PCR assay to quantify the expression of fum1 and fum19 genes from the Fumonisin-producing Fusarium verticillioides. López-Errasquín E; Vázquez C; Jiménez M; González-Jaén MT J Microbiol Methods; 2007 Feb; 68(2):312-7. PubMed ID: 17055092 [TBL] [Abstract][Full Text] [Related]
31. Genomic analysis of Fusarium verticillioides. Brown DW; Butchko RA; Proctor RH Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Sep; 25(9):1158-65. PubMed ID: 19238625 [TBL] [Abstract][Full Text] [Related]
32. N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum. Kohut G; Adám AL; Fazekas B; Hornok L Int J Food Microbiol; 2009 Mar; 130(1):65-9. PubMed ID: 19181411 [TBL] [Abstract][Full Text] [Related]
33. Diversity of pea-associated F. proliferatum and F. verticillioides populations revealed by FUM1 sequence analysis and fumonisin biosynthesis. Waśkiewicz A; Stępień L; Wilman K; Kachlicki P Toxins (Basel); 2013 Mar; 5(3):488-503. PubMed ID: 23470545 [TBL] [Abstract][Full Text] [Related]
34. Potential effects of environmental conditions on the efficiency of the antifungal tebuconazole controlling Fusarium verticillioides and Fusarium proliferatum growth rate and fumonisin biosynthesis. Marín P; de Ory A; Cruz A; Magan N; González-Jaén MT Int J Food Microbiol; 2013 Aug; 165(3):251-8. PubMed ID: 23800737 [TBL] [Abstract][Full Text] [Related]
35. Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. Fandohan P; Gnonlonfin B; Hell K; Marasas WF; Wingfield MJ Int J Food Microbiol; 2005 Mar; 99(2):173-83. PubMed ID: 15734565 [TBL] [Abstract][Full Text] [Related]
36. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Brown DW; Butchko RA; Busman M; Proctor RH Eukaryot Cell; 2007 Jul; 6(7):1210-8. PubMed ID: 17483290 [TBL] [Abstract][Full Text] [Related]
37. Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. Butrón A; Santiago R; Mansilla P; Pintos-Varela C; Ordas A; Malvar RA J Agric Food Chem; 2006 Aug; 54(16):6113-7. PubMed ID: 16881725 [TBL] [Abstract][Full Text] [Related]
38. Contamination of pine nuts by fumonisin produced by strains of Fusarium proliferatum isolated from Pinus pinea. Marín S; Ramos AJ; Vázquez C; Sanchis V Lett Appl Microbiol; 2007 Jan; 44(1):68-72. PubMed ID: 17209817 [TBL] [Abstract][Full Text] [Related]
39. PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Jurado M; Vázquez C; Marín S; Sanchis V; Teresa González-Jaén M Syst Appl Microbiol; 2006 Dec; 29(8):681-9. PubMed ID: 16513314 [TBL] [Abstract][Full Text] [Related]
40. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Desjardins AE; Busman M; Proctor RH; Stessman R Food Addit Contam; 2007 Oct; 24(10):1131-7. PubMed ID: 17886185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]