These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 19913909)

  • 21. Ca(2+)-activated ion currents triggered by ryanodine receptor-mediated Ca(2+) release control firing of inhibitory neurons in the prepositus hypoglossi nucleus.
    Saito Y; Yanagawa Y
    J Neurophysiol; 2013 Jan; 109(2):389-404. PubMed ID: 23100137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker.
    Bal T; McCormick DA
    J Physiol; 1993 Aug; 468():669-91. PubMed ID: 8254530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus.
    Huguenard JR; Prince DA
    J Neurosci; 1992 Oct; 12(10):3804-17. PubMed ID: 1403085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels.
    Knot HJ; Standen NB; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):211-21. PubMed ID: 9490841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium dependence of the priming, activation and inactivation of ryanodine receptors in frog motor nerve terminals.
    Soga-Sakakibara S; Kubota M; Suzuki S; Akita T; Narita K; Kuba K
    Eur J Neurosci; 2010 Sep; 32(6):948-62. PubMed ID: 20796022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool.
    Guerrero-Hernandez A; Dagnino-Acosta A; Verkhratsky A
    Cell Calcium; 2010; 48(2-3):143-9. PubMed ID: 20817294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones.
    Krizaj D; Lai FA; Copenhagen DR
    J Physiol; 2003 Mar; 547(Pt 3):761-74. PubMed ID: 12562925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms underlying angiotensin II-induced calcium oscillations.
    Edwards A; Pallone TL
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F568-84. PubMed ID: 18562632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of endoplasmic reticulum Ca2+ regulatory mechanisms to the inflammation-induced increase in the evoked Ca2+ transient in rat cutaneous dorsal root ganglion neurons.
    Scheff NN; Lu SG; Gold MS
    Cell Calcium; 2013 Jul; 54(1):46-56. PubMed ID: 23642703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture.
    Nagarkatti N; Deshpande LS; DeLorenzo RJ
    Neurosci Lett; 2008 May; 436(3):289-93. PubMed ID: 18406528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered sarcoplasmic reticulum calcium transport in the presence of the heavy metal chelator TPEN.
    Sztretye M; Almássy J; Deli T; Szentesi P; Jung C; Dienes B; Simut CA; Niggli E; Jona I; Csernoch L
    Cell Calcium; 2009; 46(5-6):347-55. PubMed ID: 19900703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low voltage-activated Ca2+ channels are coupled to Ca2+-induced Ca2+ release in rat thalamic midline neurons.
    Richter TA; Kolaj M; Renaud LP
    J Neurosci; 2005 Sep; 25(36):8267-71. PubMed ID: 16148234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium release from internal stores is required for the generation of spontaneous hyperpolarizations in dopaminergic neurons of neonatal rats.
    Seutin V; Mkahli F; Massotte L; Dresse A
    J Neurophysiol; 2000 Jan; 83(1):192-7. PubMed ID: 10634866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial modulation of Ca2+ -induced Ca2+ -release in rat sensory neurons.
    Jackson JG; Thayer SA
    J Neurophysiol; 2006 Sep; 96(3):1093-104. PubMed ID: 16760347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel vistas of calcium-mediated signalling in the thalamus.
    Pape HC; Munsch T; Budde T
    Pflugers Arch; 2004 May; 448(2):131-8. PubMed ID: 14770314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling.
    Seebacher F; Pollard SR; James RS
    J Exp Biol; 2012 Jun; 215(Pt 11):1847-53. PubMed ID: 22573763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium waves induced by hypertonic solutions in intact frog skeletal muscle fibres.
    Chawla S; Skepper JN; Hockaday AR; Huang CL
    J Physiol; 2001 Oct; 536(Pt 2):351-9. PubMed ID: 11600671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of ryanodine receptors induces calcium influx in a neuroblastoma cell line lacking calcium influx factor activity.
    Bose DD; Rahimian R; Thomas DW
    Biochem J; 2005 Mar; 386(Pt 2):291-6. PubMed ID: 15482258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model of the T-type calcium current and the low-threshold spike in thalamic neurons.
    Wang XJ; Rinzel J; Rogawski MA
    J Neurophysiol; 1991 Sep; 66(3):839-50. PubMed ID: 1661326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+ entry via AMPA-type glutamate receptors triggers Ca2+-induced Ca2+ release from ryanodine receptors in rat spiral ganglion neurons.
    Morton-Jones RT; Cannell MB; Housley GD
    Cell Calcium; 2008 Apr; 43(4):356-66. PubMed ID: 17719086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.