BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19914085)

  • 1. Binding of the bioflavonoid robinetin with model membranes and hemoglobin: Inhibition of lipid peroxidation and protein glycosylation.
    Chaudhuri S; Pahari B; Sengupta B; Sengupta PK
    J Photochem Photobiol B; 2010 Jan; 98(1):12-9. PubMed ID: 19914085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the interactions of hemoglobin with antioxidant flavonoids via fluorescence spectroscopy and molecular modeling studies.
    Chaudhuri S; Chakraborty S; Sengupta PK
    Biophys Chem; 2011 Feb; 154(1):26-34. PubMed ID: 21232842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment: spectroscopic and molecular modeling studies.
    Pahari BP; Chaudhuri S; Chakraborty S; Sengupta PK
    J Phys Chem B; 2015 Feb; 119(6):2533-45. PubMed ID: 25313717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of curcumin with lipid monolayers and liposomal bilayers.
    Karewicz A; Bielska D; Gzyl-Malcher B; Kepczynski M; Lach R; Nowakowska M
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):231-9. PubMed ID: 21778041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground- and excited-state proton transfer and antioxidant activity of 3-hydroxyflavone in egg yolk phosphatidylcholine liposomes: absorption and fluorescence spectroscopic studies.
    Chaudhuri S; Basu K; Sengupta B; Banerjee A; Sengupta PK
    Luminescence; 2008; 23(6):397-403. PubMed ID: 18548749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies.
    Pahari B; Chakraborty S; Chaudhuri S; Sengupta B; Sengupta PK
    Chem Phys Lipids; 2012 May; 165(4):488-96. PubMed ID: 22062971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The binding of 14-3-3γ to membranes studied by intrinsic fluorescence spectroscopy.
    Bustad HJ; Underhaug J; Halskau O; Martinez A
    FEBS Lett; 2011 Apr; 585(8):1163-8. PubMed ID: 21420405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes.
    Dwiecki K; Neunert G; Polewski P; Polewski K
    J Photochem Photobiol B; 2009 Sep; 96(3):242-8. PubMed ID: 19648024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground and excited state proton transfer and antioxidant activity of 7-hydroxyflavone in model membranes: absorption and fluorescence spectroscopic studies.
    Chaudhuri S; Pahari B; Sengupta PK
    Biophys Chem; 2009 Jan; 139(1):29-36. PubMed ID: 18977065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A red-emitting indolium fluorescence probe for membranes - flavonoids interactions.
    Gao Q; Liu H; Ding Q; Du J; Liu C; Yang W; Shen P; Yang C
    Luminescence; 2018 May; 33(3):582-587. PubMed ID: 29405584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of beta-cyclodextrin nanocavity confinement on the photophysics of robinetin.
    Banerjee A; Basu K; Sengupta PK
    J Photochem Photobiol B; 2007 Dec; 89(2-3):88-97. PubMed ID: 17951065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.
    Mateo CR; Souto AA; Amat-Guerri F; Acuña AU
    Biophys J; 1996 Oct; 71(4):2177-91. PubMed ID: 8889194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cholesterol on egg yolk phosphatidylcholine peroxidation in multilamellar liposomes.
    Filípek J; Uhríková D; Slosarcík P; Balgavý P
    Pharmazie; 2001 Dec; 56(12):953-7. PubMed ID: 11802659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cholesterol inhibits peroxidation of egg phosphatidylcholine in multilamellar liposomes].
    Gallová J; Slosarcík P; Uhríková D; Balgavý P
    Ceska Slov Farm; 2002 Sep; 51(5):240-3. PubMed ID: 12407922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscosity heterogeneity inside lipid bilayers of single-component phosphatidylcholine liposomes observed with picosecond time-resolved fluorescence spectroscopy.
    Nojima Y; Iwata K
    J Phys Chem B; 2014 Jul; 118(29):8631-41. PubMed ID: 24967901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes.
    Bozkurt E; Bayraktutan T; Acar M; Toprak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():31-5. PubMed ID: 23099157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid bilayer membrane of egg-PC liposome evaluated as chemical reaction field with picosecond time-resolved fluorescence spectroscopy.
    Nojima Y; Iwata K
    Chem Asian J; 2011 Jul; 6(7):1817-24. PubMed ID: 21557489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes.
    Klymchenko AS; Duportail G; Ozturk T; Pivovarenko VG; Mély Y; Demchenko AP
    Chem Biol; 2002 Nov; 9(11):1199-208. PubMed ID: 12445770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of stobadine on the copper-induced peroxidation of egg yolk phosphatidylcholine in multilamellar liposomes.
    Gallová J; Szalayová S
    Gen Physiol Biophys; 2004 Sep; 23(3):297-306. PubMed ID: 15638117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy.
    Cruz A; Casals C; Plasencia I; Marsh D; Pérez-Gil J
    Biochemistry; 1998 Jun; 37(26):9488-96. PubMed ID: 9649332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.