These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 19914628)
1. Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries. Venkata Narayanan NS; Ashokraj BV; Sampath S J Colloid Interface Sci; 2010 Feb; 342(2):505-12. PubMed ID: 19914628 [TBL] [Abstract][Full Text] [Related]
2. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
3. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte. Liu Z; Pulletikurthi G; Endres F ACS Appl Mater Interfaces; 2016 May; 8(19):12158-64. PubMed ID: 27119430 [TBL] [Abstract][Full Text] [Related]
5. Enhancing Cycle Life of Rechargeable Zinc Hybrid Batteries in a Low-Cost, Nonfluorinated Dual-Cation Electrolyte. Kar M; Ha TA; Nguyen C; Duncan D; O'Dell LA; Ravindranath SB; Galceran M; Kumar A; Amores M; Chen F; Pozo-Gonzalo C ACS Appl Mater Interfaces; 2024 Sep; 16(35):46289-46301. PubMed ID: 39167090 [TBL] [Abstract][Full Text] [Related]
6. Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries. Huang J; Chi X; Du Y; Qiu Q; Liu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4008-4016. PubMed ID: 33433993 [TBL] [Abstract][Full Text] [Related]
7. Prototype systems for rechargeable magnesium batteries. Aurbach D; Lu Z; Schechter A; Gofer Y; Gizbar H; Turgeman R; Cohen Y; Moshkovich M; Levi E Nature; 2000 Oct; 407(6805):724-7. PubMed ID: 11048714 [TBL] [Abstract][Full Text] [Related]
8. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries. Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786 [TBL] [Abstract][Full Text] [Related]
9. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
10. A Zn(ClO Wang L; Zhang Y; Hu H; Shi HY; Song Y; Guo D; Liu XX; Sun X ACS Appl Mater Interfaces; 2019 Nov; 11(45):42000-42005. PubMed ID: 31647213 [TBL] [Abstract][Full Text] [Related]
11. A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Wang FF; Guo YS; Yang J; Nuli Y; Hirano S Chem Commun (Camb); 2012 Nov; 48(87):10763-5. PubMed ID: 23019571 [TBL] [Abstract][Full Text] [Related]
12. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries. Liu Z; Cui T; Pulletikurthi G; Lahiri A; Carstens T; Olschewski M; Endres F Angew Chem Int Ed Engl; 2016 Feb; 55(8):2889-93. PubMed ID: 26822484 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Ji L; Zhang X Nanotechnology; 2009 Apr; 20(15):155705. PubMed ID: 19420557 [TBL] [Abstract][Full Text] [Related]
14. Synergistic gelation of silica nanoparticles and a sorbitol-based molecular gelator to yield highly-conductive free-standing gel electrolytes. Basrur VR; Guo J; Wang C; Raghavan SR ACS Appl Mater Interfaces; 2013 Jan; 5(2):262-7. PubMed ID: 23294020 [TBL] [Abstract][Full Text] [Related]
15. A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Shi HY; Ye YJ; Liu K; Song Y; Sun X Angew Chem Int Ed Engl; 2018 Dec; 57(50):16359-16363. PubMed ID: 30307094 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic and DFT studies to understand the liquid formation mechanism in the LiTFSI/acetamide complex system. Hu Y; Wang Z; Li H; Huang X; Chen L Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2009-15. PubMed ID: 15911385 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. Yu L; Zhang X J Colloid Interface Sci; 2004 Oct; 278(1):160-5. PubMed ID: 15313650 [TBL] [Abstract][Full Text] [Related]
18. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective. Kar M; Simons TJ; Forsyth M; MacFarlane DR Phys Chem Chem Phys; 2014 Sep; 16(35):18658-74. PubMed ID: 25093926 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries. Huang S; Zhu J; Tian J; Niu Z Chemistry; 2019 Nov; 25(64):14480-14494. PubMed ID: 31407398 [TBL] [Abstract][Full Text] [Related]
20. Ionic conduction in Zn3(PO4)2.4H2O enables efficient discharge of the zinc anode in serum. Shin W; Lee J; Kim Y; Steinfink H; Heller A J Am Chem Soc; 2005 Oct; 127(42):14590-1. PubMed ID: 16231909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]