BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19914857)

  • 1. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission.
    Piatkevich KD; Verkhusha VV
    Curr Opin Chem Biol; 2010 Feb; 14(1):23-9. PubMed ID: 19914857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.
    Subach FV; Patterson GH; Manley S; Gillette JM; Lippincott-Schwartz J; Verkhusha VV
    Nat Methods; 2009 Feb; 6(2):153-9. PubMed ID: 19169259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.
    Subach FV; Patterson GH; Renz M; Lippincott-Schwartz J; Verkhusha VV
    J Am Chem Soc; 2010 May; 132(18):6481-91. PubMed ID: 20394363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modern fluorescent proteins: from chromophore formation to novel intracellular applications.
    Stepanenko OV; Stepanenko OV; Shcherbakova DM; Kuznetsova IM; Turoverov KK; Verkhusha VV
    Biotechniques; 2011 Nov; 51(5):313-4, 316, 318 passim. PubMed ID: 22054544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guide to red fluorescent proteins and biosensors for flow cytometry.
    Piatkevich KD; Verkhusha VV
    Methods Cell Biol; 2011; 102():431-61. PubMed ID: 21704849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient switching of mCherry fluorescence using chemical caging.
    Cloin BMC; De Zitter E; Salas D; Gielen V; Folkers GE; Mikhaylova M; Bergeler M; Krajnik B; Harvey J; Hoogenraad CC; Van Meervelt L; Dedecker P; Kapitein LC
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7013-7018. PubMed ID: 28630286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in fluorescent protein technology.
    Shaner NC; Patterson GH; Davidson MW
    J Cell Sci; 2007 Dec; 120(Pt 24):4247-60. PubMed ID: 18057027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A photoactivatable marker protein for pulse-chase imaging with superresolution.
    Fuchs J; Böhme S; Oswald F; Hedde PN; Krause M; Wiedenmann J; Nienhaus GU
    Nat Methods; 2010 Aug; 7(8):627-30. PubMed ID: 20601949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins.
    Verkhusha VV; Lukyanov KA
    Nat Biotechnol; 2004 Mar; 22(3):289-96. PubMed ID: 14990950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red fluorescent proteins: advanced imaging applications and future design.
    Shcherbakova DM; Subach OM; Verkhusha VV
    Angew Chem Int Ed Engl; 2012 Oct; 51(43):10724-38. PubMed ID: 22851529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells.
    Gunewardene MS; Subach FV; Gould TJ; Penoncello GP; Gudheti MV; Verkhusha VV; Hess ST
    Biophys J; 2011 Sep; 101(6):1522-8. PubMed ID: 21943434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-resolution localization microscopy with photoactivatable fluorescent marker proteins.
    Hedde PN; Nienhaus GU
    Protoplasma; 2014 Mar; 251(2):349-62. PubMed ID: 24162869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light.
    Gurskaya NG; Verkhusha VV; Shcheglov AS; Staroverov DB; Chepurnykh TV; Fradkov AF; Lukyanov S; Lukyanov KA
    Nat Biotechnol; 2006 Apr; 24(4):461-5. PubMed ID: 16550175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of true monomeric and bright photoactivatable fluorescent proteins.
    Zhang M; Chang H; Zhang Y; Yu J; Wu L; Ji W; Chen J; Liu B; Lu J; Liu Y; Zhang J; Xu P; Xu T
    Nat Methods; 2012 May; 9(7):727-9. PubMed ID: 22581370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2.
    Chudakov DM; Lukyanov S; Lukyanov KA
    Nat Protoc; 2007; 2(8):2024-32. PubMed ID: 17703215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering fluorescent proteins.
    Miyawaki A; Nagai T; Mizuno H
    Adv Biochem Eng Biotechnol; 2005; 95():1-15. PubMed ID: 16080263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of the monomeric red fluorescent protein into a photoactivatable probe.
    Verkhusha VV; Sorkin A
    Chem Biol; 2005 Mar; 12(3):279-85. PubMed ID: 15797211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers.
    Subach OM; Vlaskina AV; Agapova YK; Nikolaeva AY; Anokhin KV; Piatkevich KD; Patrushev MV; Boyko KM; Subach FV
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states.
    Subach FV; Malashkevich VN; Zencheck WD; Xiao H; Filonov GS; Almo SC; Verkhusha VV
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21097-102. PubMed ID: 19934036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion.
    Mohr MA; Kobitski AY; Sabater LR; Nienhaus K; Obara CJ; Lippincott-Schwartz J; Nienhaus GU; Pantazis P
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11628-11633. PubMed ID: 28661566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.