BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19914893)

  • 1. Respiratory sinus arrhythmia on the ESA-short-arm human centrifuge.
    Migeotte PF; Pattyn N; Vanspauwen R; Neyt X; Acheroy M; Van de Heyning P; Wuyts FL
    IEEE Eng Med Biol Mag; 2009; 28(6):86-91. PubMed ID: 19914893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight.
    Verheyden B; Beckers F; Couckuyt K; Liu J; Aubert AE
    Acta Physiol (Oxf); 2007 Dec; 191(4):297-308. PubMed ID: 17784903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge.
    Verma AK; Xu D; Bruner M; Garg A; Goswami N; Blaber AP; Tavakolian K
    Front Physiol; 2018; 9():712. PubMed ID: 29988521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. +Gx tolerance by females following long-duration simulated and spaceflight microgravity.
    Koloteva MI; Lukianiuk VY; Vil-Viliams IF; Kotovskaya AR
    J Gravit Physiol; 2004 Jul; 11(2):P101-2. PubMed ID: 16235434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The features of adaptation and disadaptation of the human cardiovascular system in the space flight conditions].
    Kotovskaia AR; Fomina GA
    Fiziol Cheloveka; 2010; 36(2):78-86. PubMed ID: 20432695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in muscle sympathetic nerve activity and effects of breathing maneuvers in humans during microgravity induced by parabolic flight.
    Iwase S; Jian C; Kitazawa H; Kamiya A; Miyazaki S; Sugiyama Y; Mukai C; Kohno M; Mano T; Nagaoka S
    J Gravit Physiol; 1999 Jul; 6(1):P71-2. PubMed ID: 11543033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents.
    Vasques M; Lang C; Grindeland RE; Roy RR; Daunton N; Bigbee AJ; Wade CE
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A2-8. PubMed ID: 10776445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increases in body mass of rats during spaceflight: models and measurements.
    Wade CE; Ortiz RM; Baer LA
    Aviat Space Environ Med; 2000 Nov; 71(11):1126-30. PubMed ID: 11086667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body mass change during altered gravity: spaceflight, centrifugation, and return to 1 G.
    Wade CE; Harper JS; Daunton NG; Corcoran ML; Morey-Holton E
    J Gravit Physiol; 1997 Oct; 4(3):43-8. PubMed ID: 11541868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space cycle: a human-powered centrifuge that can be used for hypergravity resistance training.
    Yang Y; Kaplan A; Pierre M; Adams G; Cavanagh P; Takahashi C; Kreitenberg A; Hicks J; Keyak J; Caiozzo V
    Aviat Space Environ Med; 2007 Jan; 78(1):2-9. PubMed ID: 17225475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting energy expenditure of rats acclimated to hypergravity.
    Wade CE; Moran MM; Oyama J
    Aviat Space Environ Med; 2002 Sep; 73(9):859-64. PubMed ID: 12234035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Human physiological responses to hypergravity during orbiting and descent of "Soiuz" spacecrafts].
    Kotovskaia AR; Vil'-Vil'iams IF; Luk'ianiuk VIu
    Fiziol Cheloveka; 2003; 29(6):23-30. PubMed ID: 14730929
    [No Abstract]   [Full Text] [Related]  

  • 13. Simulation of Space-Adaptation Syndrome on Earth.
    Ockels WJ; Furrer R; Messerschmid E
    ESA J; 1989; 13(3):235-9. PubMed ID: 11540732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human sensitivity to gravity (on the problem of gravipreferendum).
    Shulzhenko EB
    Life Sci Space Res; 1975; 13():3-9. PubMed ID: 11913427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-arm human centrifugation with 0.4g at eye and 0.75g at heart level provides similar cerebrovascular and cardiovascular responses to standing.
    Goswami N; Bruner M; Xu D; Bareille MP; Beck A; Hinghofer-Szalkay H; Blaber AP
    Eur J Appl Physiol; 2015 Jul; 115(7):1569-75. PubMed ID: 25731928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of heart rate and blood pressure to short and long duration space missions.
    Verheyden B; Liu J; Beckers F; Aubert AE
    Respir Physiol Neurobiol; 2009 Oct; 169 Suppl 1():S13-6. PubMed ID: 19833299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-arm (1.9 m) +2.2 Gz acceleration: isotonic exercise load-O2 uptake relationship.
    Greenleaf JE; Chou JL; Stad NJ; Leftheriotis GP; Arndt NF; Jackson CG; Simonson SR; Barnes PR
    Aviat Space Environ Med; 1999 Dec; 70(12):1173-82. PubMed ID: 10596770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Correlation between empirical and statistical indices of cardiovascular deconditioning in response to orthostatic exposures].
    Voskresenskiĭ AD; Mikhaĭlov VM; Pometov IuD
    Aviakosm Ekolog Med; 2002; 36(5):48-51. PubMed ID: 12572125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sustained hyper-g load as a tool to simulate space sickness.
    Bles W; de Graaf B; Bos JE; Groen E; Krol JR
    J Gravit Physiol; 1997 Jul; 4(2):P1-4. PubMed ID: 11540661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Head-out immersion in the non-human primate: a model of cardiovascular deconditioning during microgravity.
    Cornish KG; Hughes K; Dreessen A; Olguin M
    Aviat Space Environ Med; 1999 Aug; 70(8):773-9. PubMed ID: 10447051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.