These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mutagenic analysis of Thr-232 in rhodanese from Azotobacter vinelandii highlighted the differences of this prokaryotic enzyme from the known sulfurtransferases. Pagani S; Forlani F; Carpen A; Bordo D; Colnaghi R FEBS Lett; 2000 Apr; 472(2-3):307-11. PubMed ID: 10788632 [TBL] [Abstract][Full Text] [Related]
4. Tissue and intracellular distribution of rhodanese and mercaptopyruvate sulphurtransferase in ruminants and birds. Al-Qarawi AA; Mousa HM; Ali BH Vet Res; 2001; 32(1):63-70. PubMed ID: 11254178 [TBL] [Abstract][Full Text] [Related]
5. 3-mercaptopyruvate sulphurtransferase and rhodanese activities in the developing chick embryo. Frendo J; Dudek M Folia Biol (Krakow); 1978; 26(3):209-15. PubMed ID: 720691 [No Abstract] [Full Text] [Related]
6. The effect of cAMP and some sulphur compounds upon the activity of mercaptopyruvate sulphurtransferase and rhodanese in mouse liver. Wróbel M; Frendo J Folia Biol (Krakow); 1992; 40(1-2):11-4. PubMed ID: 1333420 [TBL] [Abstract][Full Text] [Related]
7. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330 [TBL] [Abstract][Full Text] [Related]
8. Purification and some properties of thiosulphate-cleaving enzyme from Thiobacillus novellus. Fukumori Y; Hoshiko K; Yamanaka T FEMS Microbiol Lett; 1989 Nov; 53(1-2):159-63. PubMed ID: 2612884 [TBL] [Abstract][Full Text] [Related]
9. Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii. Colnaghi R; Pagani S; Kennedy C; Drummond M Eur J Biochem; 1996 Feb; 236(1):240-8. PubMed ID: 8617271 [TBL] [Abstract][Full Text] [Related]
10. Comparative studies on the distribution of rhodanese and beta-mercaptopyruvate sulfurtransferase in different organs of sheep (Ovis aries) and cattle (Bos taurus). Aminlari M; Gilanpour H; Taghavianpour H; Veseghi T Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(2):259-62. PubMed ID: 2565183 [TBL] [Abstract][Full Text] [Related]
11. Molecular recognition between Azotobacter vinelandii rhodanese and a sulfur acceptor protein. Cereda A; Forlani F; Iametti S; Bernhardt R; Ferranti P; Picariello G; Pagani S; Bonomi F Biol Chem; 2003; 384(10-11):1473-81. PubMed ID: 14669990 [TBL] [Abstract][Full Text] [Related]
12. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study. Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202 [TBL] [Abstract][Full Text] [Related]
13. The effect of 2-substituted thiazolidine-4(R)-carboxylic acids on non-protein sulphydryl levels and sulphurtransferase activities in mouse liver and brain. Włodek L; Radomski J; Wróbel M Biochem Pharmacol; 1993 Jul; 46(1):190-3. PubMed ID: 8347132 [TBL] [Abstract][Full Text] [Related]
14. Backbone NMR assignment of the 29.6 kDa rhodanese protein from Azotobacter vinelandii. Gallo M; Melino S; Melis R; Paci M; Cicero DO J Biomol NMR; 2006; 36 Suppl 1():73. PubMed ID: 16933019 [No Abstract] [Full Text] [Related]
15. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. Nagahara N; Okazaki T; Nishino T J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189 [TBL] [Abstract][Full Text] [Related]
16. Rhodanese from Thiobacillus A2: catalysis of reactions of thiosulphate with dihydrolipoate and dihydrolipoamide. Silver M; Kelly DP J Gen Microbiol; 1976 Dec; 97(2):277-84. PubMed ID: 13142 [TBL] [Abstract][Full Text] [Related]
17. Rhodanese from Cercopithecus aethiops (vervet monkey) liver. I. Purification and some physical characteristics. Janse van Rensburg L; Schabort JC Int J Biochem; 1984; 16(5):539-46. PubMed ID: 6586594 [TBL] [Abstract][Full Text] [Related]
18. Regional and subcellular distribution of cyanide metabolizing enzymes in the central nervous system. Mimori Y; Nakamura S; Kameyama M J Neurochem; 1984 Aug; 43(2):540-5. PubMed ID: 6588145 [TBL] [Abstract][Full Text] [Related]
19. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification. Nagahara N; Ito T; Minami M Histol Histopathol; 1999 Oct; 14(4):1277-86. PubMed ID: 10506943 [TBL] [Abstract][Full Text] [Related]
20. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and site-directed mutagenesis. Nagahara N; Nishino T J Biol Chem; 1996 Nov; 271(44):27395-401. PubMed ID: 8910318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]