BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 19915131)

  • 1. Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing.
    Ishihara D; Yamashita Y; Horie T; Yoshida S; Niho T
    J Exp Biol; 2009 Dec; 212(Pt 23):3882-91. PubMed ID: 19915131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight.
    Ishihara D; Horie T; Denda M
    J Exp Biol; 2009 Jan; 212(Pt 1):1-10. PubMed ID: 19088205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies.
    Ishihara D; Horie T; Niho T
    Bioinspir Biomim; 2014 Nov; 9(4):046009. PubMed ID: 25378268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing kinematics measurement and aerodynamics of hovering droneflies.
    Liu Y; Sun M
    J Exp Biol; 2008 Jul; 211(Pt 13):2014-25. PubMed ID: 18552290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
    Wu JH; Zhang YL; Sun M
    J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of advance ratio on the aerodynamics of revolving wings.
    Dickson WB; Dickinson MH
    J Exp Biol; 2004 Nov; 207(Pt 24):4269-81. PubMed ID: 15531648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic efficiency of flapping flight: analysis of a two-stroke model.
    Wang ZJ
    J Exp Biol; 2008 Jan; 211(Pt 2):234-8. PubMed ID: 18165251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2691-704. PubMed ID: 19648414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
    Du G; Sun M
    J Theor Biol; 2012 May; 300():19-28. PubMed ID: 22266123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of flexibility on the aerodynamic performance of a hovering wing.
    Vanella M; Fitzgerald T; Preidikman S; Balaras E; Balachandran B
    J Exp Biol; 2009 Jan; 212(Pt 1):95-105. PubMed ID: 19088215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.