These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 19915153)
1. Impact of adiponectin deficiency on pulmonary responses to acute ozone exposure in mice. Zhu M; Hug C; Kasahara DI; Johnston RA; Williams AS; Verbout NG; Si H; Jastrab J; Srivastava A; Williams ES; Ranscht B; Shore SA Am J Respir Cell Mol Biol; 2010 Oct; 43(4):487-97. PubMed ID: 19915153 [TBL] [Abstract][Full Text] [Related]
2. Role of the adiponectin binding protein, T-cadherin (cdh13), in pulmonary responses to subacute ozone. Kasahara DI; Williams AS; Benedito LA; Ranscht B; Kobzik L; Hug C; Shore SA PLoS One; 2013; 8(6):e65829. PubMed ID: 23755285 [TBL] [Abstract][Full Text] [Related]
3. Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice. Kasahara DI; Kim HY; Mathews JA; Verbout NG; Williams AS; Wurmbrand AP; Ninin FM; Neto FL; Benedito LA; Hug C; Umetsu DT; Shore SA Am J Physiol Lung Cell Mol Physiol; 2014 Mar; 306(6):L508-20. PubMed ID: 24381131 [TBL] [Abstract][Full Text] [Related]
4. Pulmonary inflammation induced by subacute ozone is augmented in adiponectin-deficient mice: role of IL-17A. Kasahara DI; Kim HY; Williams AS; Verbout NG; Tran J; Si H; Wurmbrand AP; Jastrab J; Hug C; Umetsu DT; Shore SA J Immunol; 2012 May; 188(9):4558-67. PubMed ID: 22474022 [TBL] [Abstract][Full Text] [Related]
5. Role of the adiponectin binding protein, T-cadherin (Cdh13), in allergic airways responses in mice. Williams AS; Kasahara DI; Verbout NG; Fedulov AV; Zhu M; Si H; Wurmbrand AP; Hug C; Ranscht B; Shore SA PLoS One; 2012; 7(7):e41088. PubMed ID: 22815927 [TBL] [Abstract][Full Text] [Related]
6. Type I interleukin-1 receptor is required for pulmonary responses to subacute ozone exposure in mice. Johnston RA; Mizgerd JP; Flynt L; Quinton LJ; Williams ES; Shore SA Am J Respir Cell Mol Biol; 2007 Oct; 37(4):477-84. PubMed ID: 17575079 [TBL] [Abstract][Full Text] [Related]
7. Role of interleukin-6 in murine airway responses to ozone. Johnston RA; Schwartzman IN; Flynt L; Shore SA Am J Physiol Lung Cell Mol Physiol; 2005 Feb; 288(2):L390-7. PubMed ID: 15516495 [TBL] [Abstract][Full Text] [Related]
8. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure. Razvi SS; Richards JB; Malik F; Cromar KR; Price RE; Bell CS; Weng T; Atkins CL; Spencer CY; Cockerill KJ; Alexander AL; Blackburn MR; Alcorn JL; Haque IU; Johnston RA Am J Physiol Lung Cell Mol Physiol; 2015 Nov; 309(10):L1174-85. PubMed ID: 26386120 [TBL] [Abstract][Full Text] [Related]
9. Endogenous osteopontin promotes ozone-induced neutrophil recruitment to the lungs and airway hyperresponsiveness to methacholine. Barreno RX; Richards JB; Schneider DJ; Cromar KR; Nadas AJ; Hernandez CB; Hallberg LM; Price RE; Hashmi SS; Blackburn MR; Haque IU; Johnston RA Am J Physiol Lung Cell Mol Physiol; 2013 Jul; 305(2):L118-29. PubMed ID: 23666750 [TBL] [Abstract][Full Text] [Related]
10. Adiponectin-deficient mice are protected against tobacco-induced inflammation and increased emphysema. Miller M; Pham A; Cho JY; Rosenthal P; Broide DH Am J Physiol Lung Cell Mol Physiol; 2010 Dec; 299(6):L834-42. PubMed ID: 20935231 [TBL] [Abstract][Full Text] [Related]
11. Interleukin-1 receptor antagonist attenuates airway hyperresponsiveness following exposure to ozone. Park JW; Taube C; Swasey C; Kodama T; Joetham A; Balhorn A; Takeda K; Miyahara N; Allen CB; Dakhama A; Kim SH; Dinarello CA; Gelfand EW Am J Respir Cell Mol Biol; 2004 Jun; 30(6):830-6. PubMed ID: 14754758 [TBL] [Abstract][Full Text] [Related]
12. Effect of obesity on pulmonary inflammation induced by acute ozone exposure: role of interleukin-6. Lang JE; Williams ES; Mizgerd JP; Shore SA Am J Physiol Lung Cell Mol Physiol; 2008 May; 294(5):L1013-20. PubMed ID: 18359888 [TBL] [Abstract][Full Text] [Related]
13. Attenuation and recovery of pulmonary injury in rats following short-term, repeated daily exposure to ozone. van Bree L; Dormans JA; Koren HS; Devlin RB; Rombout PJ Inhal Toxicol; 2002 Aug; 14(8):883-900. PubMed ID: 12122568 [TBL] [Abstract][Full Text] [Related]
15. Augmented responses to ozone in obese carboxypeptidase E-deficient mice. Johnston RA; Theman TA; Shore SA Am J Physiol Regul Integr Comp Physiol; 2006 Jan; 290(1):R126-33. PubMed ID: 16002559 [TBL] [Abstract][Full Text] [Related]
16. Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice. Han SG; Andrews R; Gairola CG; Bhalla DK Inhal Toxicol; 2008 Feb; 20(4):391-8. PubMed ID: 18302047 [TBL] [Abstract][Full Text] [Related]
17. Protective role of matrix metalloproteinase-9 in ozone-induced airway inflammation. Yoon HK; Cho HY; Kleeberger SR Environ Health Perspect; 2007 Nov; 115(11):1557-63. PubMed ID: 18007984 [TBL] [Abstract][Full Text] [Related]
18. Impact of aging on pulmonary responses to acute ozone exposure in mice: role of TNFR1. Shore SA; Williams ES; Chen L; Benedito LA; Kasahara DI; Zhu M Inhal Toxicol; 2011 Dec; 23(14):878-88. PubMed ID: 22066571 [TBL] [Abstract][Full Text] [Related]
19. Hyperresponsive airways correlate with lung tissue inflammatory cell changes in ozone-exposed rats. DeLorme MP; Yang H; Elbon-Copp C; Gao X; Barraclough-Mitchell H; Bassett DJ J Toxicol Environ Health A; 2002 Oct; 65(19):1453-70. PubMed ID: 12396876 [TBL] [Abstract][Full Text] [Related]
20. CXCR2 is essential for maximal neutrophil recruitment and methacholine responsiveness after ozone exposure. Johnston RA; Mizgerd JP; Shore SA Am J Physiol Lung Cell Mol Physiol; 2005 Jan; 288(1):L61-7. PubMed ID: 15361358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]