These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 19915541)

  • 21. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
    MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED
    Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain-specific sequences required for yeast [PSI+] prion propagation.
    Chang HY; Lin JY; Lee HC; Wang HL; King CY
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13345-50. PubMed ID: 18757753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yeast prion-protein, sup35, fibril formation proceeds by addition and substraction of oligomers.
    Narayanan S; Walter S; Reif B
    Chembiochem; 2006 May; 7(5):757-65. PubMed ID: 16570324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104.
    Kryndushkin DS; Alexandrov IM; Ter-Avanesyan MD; Kushnirov VV
    J Biol Chem; 2003 Dec; 278(49):49636-43. PubMed ID: 14507919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
    Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE
    PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104.
    Sweeny EA; Shorter J
    J Mol Biol; 2016 May; 428(9 Pt B):1870-85. PubMed ID: 26608812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The physical basis of how prion conformations determine strain phenotypes.
    Tanaka M; Collins SR; Toyama BH; Weissman JS
    Nature; 2006 Aug; 442(7102):585-9. PubMed ID: 16810177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+].
    Tessier PM; Lindquist S
    Nat Struct Mol Biol; 2009 Jun; 16(6):598-605. PubMed ID: 19491937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular basis for diversification of yeast prion strain conformation.
    Ohhashi Y; Yamaguchi Y; Kurahashi H; Kamatari YO; Sugiyama S; Uluca B; Piechatzek T; Komi Y; Shida T; Müller H; Hanashima S; Heise H; Kuwata K; Tanaka M
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2389-2394. PubMed ID: 29467288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers.
    Shorter J; Lindquist S
    Science; 2004 Jun; 304(5678):1793-7. PubMed ID: 15155912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of yeast prion aggregates with amyloid-staining compound in vivo.
    Kimura Y; Koitabashi S; Fujita T
    Cell Struct Funct; 2003 Jun; 28(3):187-93. PubMed ID: 12951439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational diversity in a yeast prion dictates its seeding specificity.
    Chien P; Weissman JS
    Nature; 2001 Mar; 410(6825):223-7. PubMed ID: 11242084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteolysis suppresses spontaneous prion generation in yeast.
    Okamoto A; Hosoda N; Tanaka A; Newnam GP; Chernoff YO; Hoshino SI
    J Biol Chem; 2017 Dec; 292(49):20113-20124. PubMed ID: 29038292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A variational model for oligomer-formation process of GNNQQNY peptide from yeast prion protein Sup35.
    Qi X; Hong L; Zhang Y
    Biophys J; 2012 Feb; 102(3):597-605. PubMed ID: 22325283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structural basis of yeast prion strain variants.
    Toyama BH; Kelly MJ; Gross JD; Weissman JS
    Nature; 2007 Sep; 449(7159):233-7. PubMed ID: 17767153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking.
    Wong SH; King CY
    J Biol Chem; 2015 Oct; 290(41):25062-71. PubMed ID: 26265470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mammalian amyloidogenic proteins promote prion nucleation in yeast.
    Chandramowlishwaran P; Sun M; Casey KL; Romanyuk AV; Grizel AV; Sopova JV; Rubel AA; Nussbaum-Krammer C; Vorberg IM; Chernoff YO
    J Biol Chem; 2018 Mar; 293(9):3436-3450. PubMed ID: 29330303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions.
    Bradley ME; Liebman SW
    Mol Microbiol; 2004 Mar; 51(6):1649-59. PubMed ID: 15009892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.