These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19915553)

  • 1. Size and shape effects on the order-disorder phase transition in CoPt nanoparticles.
    Alloyeau D; Ricolleau C; Mottet C; Oikawa T; Langlois C; Le Bouar Y; Braidy N; Loiseau A
    Nat Mater; 2009 Dec; 8(12):940-6. PubMed ID: 19915553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells.
    San BH; Lee S; Moh SH; Park JG; Lee JH; Hwang HY; Kim KK
    J Mater Chem B; 2013 Mar; 1(10):1453-1460. PubMed ID: 32260785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order-disorder transitions in Pt-Rh nanoparticles.
    Pohl J; Stahl C; Albe K
    Beilstein J Nanotechnol; 2012; 3():1-11. PubMed ID: 22428091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallopolymer precursors to L10-CoPt nanoparticles: synthesis, characterization, nanopatterning and potential application.
    Dong Q; Qu W; Liang W; Guo K; Xue H; Guo Y; Meng Z; Ho CL; Leung CW; Wong WY
    Nanoscale; 2016 Apr; 8(13):7068-74. PubMed ID: 26961373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the size- and shape-dependent cohesive energy and order-disorder transition temperature of Co-Pt nanoparticles by embedded-atom-method potential.
    Liu C; Qi W; Ouyang B; Wang X; Huang B
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1261-4. PubMed ID: 23646615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling structure and morphology of CoPt nanoparticles through dynamical or static coalescence effects.
    Penuelas J; Andreazza P; Andreazza-Vignolle C; Tolentino HC; De Santis M; Mottet C
    Phys Rev Lett; 2008 Mar; 100(11):115502. PubMed ID: 18517793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and structural properties of CuAg and CoPt bimetallic nanoparticles.
    Langlois C; Alloyeau D; Le Bouar Y; Loiseau A; Oikawa T; Mottet C; Ricolleau C
    Faraday Discuss; 2008; 138():375-91; discussion 421-34. PubMed ID: 18447027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: a comparative study.
    Dupuis V; Robert A; Hillion A; Khadra G; Blanc N; Le Roy D; Tournus F; Albin C; Boisron O; Tamion A
    Beilstein J Nanotechnol; 2016; 7():1850-1860. PubMed ID: 28144534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling size and shape effects on the order-disorder phase-transition temperature of CoPt nanoparticles.
    Qi W; Li Y; Xiong S; Lee ST
    Small; 2010 Sep; 6(18):1996-9. PubMed ID: 20690135
    [No Abstract]   [Full Text] [Related]  

  • 10. Self-assembled copt nanoparticles monolayer film and its IR optical properties.
    Zhou XW; Zhang RH; Jiang YX; Sun SG
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8265-70. PubMed ID: 21121326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and chemical ordering in CoPt nanoalloys.
    Rossi G; Ferrando R; Mottet C
    Faraday Discuss; 2008; 138():193-210; discussion 211-23, 433-4. PubMed ID: 18447017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-L1(0) domain CoPt and FePt nanoparticles revealed by electron microscopy.
    Tournus F; Sato K; Epicier T; Konno TJ; Dupuis V
    Phys Rev Lett; 2013 Feb; 110(5):055501. PubMed ID: 23414032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FePt and CoPt nanoparticles co-deposited on silicon dioxide-a comparative study.
    Castaldi L; Giannakopoulos K; Travlos A; Niarchos D; Boukari S; Beaurepaire E
    Nanotechnology; 2008 Feb; 19(8):085701. PubMed ID: 21730732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles.
    Alloyeau D; Ricolleau C; Langlois C; Le Bouar Y; Loiseau A
    Beilstein J Nanotechnol; 2010; 1():55-9. PubMed ID: 21977394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk Immiscibility at the Edge of the Nanoscale.
    Chatzidakis M; Prabhudev S; Saidi P; Chiang CN; Hoyt JJ; Botton GA
    ACS Nano; 2017 Nov; 11(11):10984-10991. PubMed ID: 29072899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles.
    Alloyeau D; Ricolleau C; Oikawa T; Langlois C; Le Bouar Y; Loiseau A
    Ultramicroscopy; 2009 Jun; 109(7):788-96. PubMed ID: 19327891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and magnetic behavior of ultra-small bimetallic FeCo/graphite nanoparticles.
    Castrillón M; Mayoral A; Urtizberea A; Marquina C; Irusta S; Meier JG; Santamaría J
    Nanotechnology; 2013 Dec; 24(50):505702. PubMed ID: 24270853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STEM nanodiffraction technique for structural analysis of CoPt nanoparticles.
    Alloyeau D; Ricolleau C; Oikawa T; Langlois C; Le Bouar Y; Loiseau A
    Ultramicroscopy; 2008 Jun; 108(7):656-62. PubMed ID: 18060699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size.
    Schilling M; Ziemann P; Zhang Z; Biskupek J; Kaiser U; Wiedwald U
    Beilstein J Nanotechnol; 2016; 7():591-604. PubMed ID: 27335749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.