BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19915684)

  • 1. HIV-1 Integrase Strand Transfer Inhibitors: Novel Insights into their Mechanism of Action.
    Pandey KK; Grandgenett DP
    Retrovirology (Auckl); 2008 Nov; 2():11-16. PubMed ID: 19915684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of human immunodeficiency virus type 1 concerted integration by strand transfer inhibitors which recognize a transient structural intermediate.
    Pandey KK; Bera S; Zahm J; Vora A; Stillmock K; Hazuda D; Grandgenett DP
    J Virol; 2007 Nov; 81(22):12189-99. PubMed ID: 17804497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Interactions between HIV-1 integrase and the two viral DNA ends within the synaptic complex that mediates concerted integration.
    Bera S; Pandey KK; Vora AC; Grandgenett DP
    J Mol Biol; 2009 May; 389(1):183-98. PubMed ID: 19362096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors.
    Pandey KK; Bera S; Vora AC; Grandgenett DP
    Biochemistry; 2010 Sep; 49(38):8376-87. PubMed ID: 20799722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIV-1 integrase strand transfer inhibitors stabilize an integrase-single blunt-ended DNA complex.
    Bera S; Pandey KK; Vora AC; Grandgenett DP
    J Mol Biol; 2011 Jul; 410(5):831-46. PubMed ID: 21295584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rous sarcoma virus synaptic complex capable of concerted integration is kinetically trapped by human immunodeficiency virus integrase strand transfer inhibitors.
    Pandey KK; Bera S; Korolev S; Campbell M; Yin Z; Aihara H; Grandgenett DP
    J Biol Chem; 2014 Jul; 289(28):19648-58. PubMed ID: 24872410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells.
    Sinha S; Grandgenett DP
    J Virol; 2005 Jul; 79(13):8208-16. PubMed ID: 15956566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and biophysical analyses of concerted (U5/U3) integration.
    Grandgenett DP; Bera S; Pandey KK; Vora AC; Zahm J; Sinha S
    Methods; 2009 Apr; 47(4):229-36. PubMed ID: 19049878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of human immunodeficiency virus type 1 concerted integration related to strand transfer inhibition and drug resistance.
    Zahm JA; Bera S; Pandey KK; Vora A; Stillmock K; Hazuda D; Grandgenett DP
    Antimicrob Agents Chemother; 2008 Sep; 52(9):3358-68. PubMed ID: 18591263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleoprotein complex intermediates in HIV-1 integration.
    Li M; Craigie R
    Methods; 2009 Apr; 47(4):237-42. PubMed ID: 19232539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors.
    Dicker IB; Samanta HK; Li Z; Hong Y; Tian Y; Banville J; Remillard RR; Walker MA; Langley DR; Krystal M
    J Biol Chem; 2007 Oct; 282(43):31186-96. PubMed ID: 17715137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase.
    Bera S; Pandey KK; Aihara H; Grandgenett DP
    J Biol Chem; 2018 Oct; 293(42):16440-16452. PubMed ID: 30185621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations Located outside the Integrase Gene Can Confer Resistance to HIV-1 Integrase Strand Transfer Inhibitors.
    Malet I; Subra F; Charpentier C; Collin G; Descamps D; Calvez V; Marcelin AG; Delelis O
    mBio; 2017 Sep; 8(5):. PubMed ID: 28951475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target DNA capture by HIV-1 integration complexes.
    Miller MD; Bor YC; Bushman F
    Curr Biol; 1995 Sep; 5(9):1047-56. PubMed ID: 8542281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of HIV-1 preintegration complexes.
    Engelman A; Oztop I; Vandegraaff N; Raghavendra NK
    Methods; 2009 Apr; 47(4):283-90. PubMed ID: 19233280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a replication-defective human immunodeficiency virus type 1 att site mutant that is blocked after the 3' processing step of retroviral integration.
    Chen H; Engelman A
    J Virol; 2000 Sep; 74(17):8188-93. PubMed ID: 10933731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV integrase as a target for antiretroviral therapy.
    Hazuda DJ
    Curr Opin HIV AIDS; 2012 Sep; 7(5):383-9. PubMed ID: 22871634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling of the Core Leads HIV-1 Preintegration Complex into the Nucleus of Human Lymphocytes.
    Blanco-Rodriguez G; Gazi A; Monel B; Frabetti S; Scoca V; Mueller F; Schwartz O; Krijnse-Locker J; Charneau P; Di Nunzio F
    J Virol; 2020 May; 94(11):. PubMed ID: 32238582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The future of integrase inhibitors of HIV-1.
    Malet I; Calvez V; Marcelin AG
    Curr Opin Virol; 2012 Oct; 2(5):580-7. PubMed ID: 22980926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition.
    Engelman AN
    J Biol Chem; 2019 Oct; 294(41):15137-15157. PubMed ID: 31467082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.