These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19915730)

  • 1. Inactivation of medial prefrontal cortex impairs time interval discrimination in rats.
    Kim J; Jung AH; Byun J; Jo S; Jung MW
    Front Behav Neurosci; 2009; 3():38. PubMed ID: 19915730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of interval timing in rodent prefrontal cortex.
    Kim J; Ghim JW; Lee JH; Jung MW
    J Neurosci; 2013 Aug; 33(34):13834-47. PubMed ID: 23966703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of the Medial-Prefrontal Cortex Impairs Interval Timing Precision, but Not Timing Accuracy or Scalar Timing in a Peak-Interval Procedure in Rats.
    Buhusi CV; Reyes MB; Gathers CA; Oprisan SA; Buhusi M
    Front Integr Neurosci; 2018; 12():20. PubMed ID: 29988576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the medial prefrontal cortex, mediodorsal thalamus, and their combined circuit for performance of the odor span task in rats: analysis of memory capacity and foraging behavior.
    Scott GA; Liu MC; Tahir NB; Zabder NK; Song Y; Greba Q; Howland JG
    Learn Mem; 2020 Feb; 27(2):67-77. PubMed ID: 31949038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential role of the dorsal hippocampus, ventro-intermediate hippocampus, and medial prefrontal cortex in updating the value of a spatial goal.
    De Saint Blanquat P; Hok V; Save E; Poucet B; Chaillan FA
    Hippocampus; 2013 May; 23(5):342-51. PubMed ID: 23460312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prefrontal cortex and hippocampus subserve different components of working memory in rats.
    Yoon T; Okada J; Jung MW; Kim JJ
    Learn Mem; 2008 Mar; 15(3):97-105. PubMed ID: 18285468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of neural responses in the primary auditory cortex, amygdala, and medial prefrontal cortex of cats during auditory discrimination tasks.
    Zhao Z; Ma L; Wang Y; Qin L
    J Neurophysiol; 2019 Mar; 121(3):785-798. PubMed ID: 30649979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex.
    Gilmartin MR; Helmstetter FJ
    Learn Mem; 2010 Jun; 17(6):289-96. PubMed ID: 20504949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Dynamics of Striatal and Prefrontal Neural Activity During Temporal Discrimination.
    Kim J; Kim D; Jung MW
    Front Integr Neurosci; 2018; 12():34. PubMed ID: 30150927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats.
    Shah AA; Sjovold T; Treit D
    Brain Res; 2004 Nov; 1028(1):112-5. PubMed ID: 15518648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial prefrontal and ventral hippocampal contributions to incidental context learning and memory in adolescent rats.
    Heroux NA; Horgan CJ; Pinizzotto CC; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2019 Dec; 166():107091. PubMed ID: 31542328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insular cortex inactivation generalizes fear-induced underestimation of interval timing in a temporal bisection task.
    Kamada T; Hata T
    Behav Brain Res; 2018 Jul; 347():219-226. PubMed ID: 29551731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning.
    Takehara-Nishiuchi K; Kawahara S; Kirino Y
    Learn Mem; 2005; 12(6):606-14. PubMed ID: 16322362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal representation of audio-place associations in the medial prefrontal cortex of rats.
    Wang Q; Yang ST; Li BM
    Mol Brain; 2015 Sep; 8(1):56. PubMed ID: 26391676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of rat medial prefrontal cortex temporal inactivation on a delayed alternation task.
    Izaki Y; Maruki K; Hori K; Nomura M
    Neurosci Lett; 2001 Nov; 315(3):129-32. PubMed ID: 11716980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The involvement of the orbitofrontal cortex in learning under changing task contingencies.
    Kim J; Ragozzino ME
    Neurobiol Learn Mem; 2005 Mar; 83(2):125-33. PubMed ID: 15721796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of the medial prefrontal cortex and hippocampus in a spatial paired-association task.
    Lee I; Solivan F
    Learn Mem; 2008 May; 15(5):357-67. PubMed ID: 18463175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between medial prefrontal cortex and dorsomedial striatum are necessary for odor span capacity in rats: role of GluN2B-containing NMDA receptors.
    Davies DA; Greba Q; Selk JC; Catton JK; Baillie LD; Mulligan SJ; Howland JG
    Learn Mem; 2017 Oct; 24(10):524-531. PubMed ID: 28916627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat.
    Viena TD; Linley SB; Vertes RP
    Hippocampus; 2018 Apr; 28(4):297-311. PubMed ID: 29357198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of the amygdala and medial prefrontal cortex to incentive cue responding.
    Ishikawa A; Ambroggi F; Nicola SM; Fields HL
    Neuroscience; 2008 Aug; 155(3):573-84. PubMed ID: 18640246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.