These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19916003)

  • 1. Systemic properties of metabolic networks lead to an epistasis-based model for heterosis.
    Fiévet JB; Dillmann C; de Vienne D
    Theor Appl Genet; 2010 Jan; 120(2):463-73. PubMed ID: 19916003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dominance and epistasis are the main contributors to heterosis for plant height in rice.
    Shen G; Zhan W; Chen H; Xing Y
    Plant Sci; 2014 Feb; 215-216():11-8. PubMed ID: 24388510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach for predicting heterosis based on an additive, dominance and additive x additive model with environment interaction.
    Xu ZC; Zhu J
    Heredity (Edinb); 1999 May; 82 ( Pt 5)():510-7. PubMed ID: 10383671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Boolean gene regulatory model of heterosis and speciation.
    Emmrich PM; Roberts HE; Pancaldi V
    BMC Evol Biol; 2015 Feb; 15():24. PubMed ID: 25888139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design.
    Wen J; Zhao X; Wu G; Xiang D; Liu Q; Bu SH; Yi C; Song Q; Dunwell JM; Tu J; Zhang T; Zhang YM
    Sci Rep; 2015 Dec; 5():18376. PubMed ID: 26679476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton.
    Li C; Zhao T; Yu H; Li C; Deng X; Dong Y; Zhang F; Zhang Y; Mei L; Chen J; Zhu S
    BMC Genomics; 2018 Dec; 19(1):910. PubMed ID: 30541432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplicative vs. arbitrary gene action in heterosis.
    Schnell FW; Cockerham CC
    Genetics; 1992 Jun; 131(2):461-9. PubMed ID: 1644280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved heterosis prediction by combining information on DNA- and metabolic markers.
    Gärtner T; Steinfath M; Andorf S; Lisec J; Meyer RC; Altmann T; Willmitzer L; Selbig J
    PLoS One; 2009; 4(4):e5220. PubMed ID: 19370148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From
    Fiévet JB; Nidelet T; Dillmann C; de Vienne D
    Front Genet; 2018; 9():159. PubMed ID: 29868111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids.
    Li L; Lu K; Chen Z; Mu T; Hu Z; Li X
    Genetics; 2008 Nov; 180(3):1725-42. PubMed ID: 18791236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana.
    Syed NH; Chen ZJ
    Heredity (Edinb); 2005 Mar; 94(3):295-304. PubMed ID: 15316557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hybrid protein interactome contributes to rice heterosis as epistatic effects.
    Li H; Jiang S; Li C; Liu L; Lin Z; He H; Deng XW; Zhang Z; Wang X
    Plant J; 2020 Apr; 102(1):116-128. PubMed ID: 31736145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.
    Li ZK; Luo LJ; Mei HW; Wang DL; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH
    Genetics; 2001 Aug; 158(4):1737-53. PubMed ID: 11514459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice.
    Garcia AA; Wang S; Melchinger AE; Zeng ZB
    Genetics; 2008 Nov; 180(3):1707-24. PubMed ID: 18791260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components.
    Luo LJ; Li ZK; Mei HW; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH
    Genetics; 2001 Aug; 158(4):1755-71. PubMed ID: 11514460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis.
    Melchinger AE; Piepho HP; Utz HF; Muminovic J; Wegenast T; Törjék O; Altmann T; Kusterer B
    Genetics; 2007 Nov; 177(3):1827-37. PubMed ID: 18039884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of epistasis in the manifestation of heterosis: a systems-oriented approach.
    Melchinger AE; Utz HF; Piepho HP; Zeng ZB; Schön CC
    Genetics; 2007 Nov; 177(3):1815-25. PubMed ID: 18039883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of heterosis in a genome-scale metabolic network provides mechanistic explanations for increased biomass production rates in hybrid plants.
    Vacher M; Small I
    NPJ Syst Biol Appl; 2019; 5():24. PubMed ID: 31341636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids.
    Shang L; Wang Y; Cai S; Wang X; Li Y; Abduweli A; Hua J
    G3 (Bethesda); 2015 Dec; 6(3):499-507. PubMed ID: 26715091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines.
    Frascaroli E; Canè MA; Landi P; Pea G; Gianfranceschi L; Villa M; Morgante M; Pè ME
    Genetics; 2007 May; 176(1):625-44. PubMed ID: 17339211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.