These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19916102)

  • 41. [Gamma ray decontamination of skins and wool contaminated with Bac. anthracis spores].
    Iordanov I
    Vet Med Nauki; 1977; 14(8):14-9. PubMed ID: 415409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reaerosolization of Spores from Flooring Surfaces To Assess the Risk of Dissemination and Transmission of Infections.
    Paton S; Thompson KA; Parks SR; Bennett AM
    Appl Environ Microbiol; 2015 Aug; 81(15):4914-9. PubMed ID: 25979883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Setting risk-informed environmental standards for Bacillus anthracis spores.
    Hong T; Gurian PL; Ward NF
    Risk Anal; 2010 Oct; 30(10):1602-22. PubMed ID: 20626695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model.
    Barnewall RE; Comer JE; Miller BD; Gutting BW; Wolfe DN; Director-Myska AE; Nichols TL; Taft SC
    Front Cell Infect Microbiol; 2012; 2():71. PubMed ID: 22919662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Anthrax--continuous threat to humans and animals].
    Mizak L
    Przegl Epidemiol; 2004; 58(2):335-42. PubMed ID: 15517814
    [TBL] [Abstract][Full Text] [Related]  

  • 47. No evidence of a mild form of inhalational Bacillus anthracis infection during a bioterrorism-related inhalational anthrax outbreak in Washington, D.C., in 2001.
    Baggett HC; Rhodes JC; Fridkin SK; Quinn CP; Hageman JC; Friedman CR; Dykewicz CA; Semenova VA; Romero-Steiner S; Elie CM; Jernigan JA
    Clin Infect Dis; 2005 Oct; 41(7):991-7. PubMed ID: 16142664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remediation of Bacillus anthracis contamination in the U.S. Department of Justice mail facility.
    Canter DA; Gunning D; Rodgers P; O'connor L; Traunero C; Kempter CJ
    Biosecur Bioterror; 2005; 3(2):119-27. PubMed ID: 16000043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fungal spore source strength tester: laboratory evaluation of a new concept.
    Sivasubramani SK; Niemeier RT; Reponen T; Grinshpun SA
    Sci Total Environ; 2004 Aug; 329(1-3):75-86. PubMed ID: 15262159
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.
    Schmees DK; Wu YH; Vincent JH
    J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A disclosure gel for visual detection of live Bacillus anthracis spores.
    Robinson CV; Bishop AH
    J Appl Microbiol; 2019 Jun; 126(6):1700-1707. PubMed ID: 30776160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An automated front-end monitor for anthrax surveillance systems based on the rapid detection of airborne endospores.
    Yung PT; Lester ED; Bearman G; Ponce A
    Biotechnol Bioeng; 2007 Nov; 98(4):864-71. PubMed ID: 17514759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reaerosolization of fluidized spores in ventilation systems.
    Krauter P; Biermann A
    Appl Environ Microbiol; 2007 Apr; 73(7):2165-72. PubMed ID: 17293522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A quantitative method to assess the role of indoor air decontamination to simultaneously reduce contamination of environmental surfaces: testing with vegetative and spore-forming bacteria.
    Zargar B; Sattar SA; Rubino JR; Ijaz MK
    Lett Appl Microbiol; 2019 Mar; 68(3):206-211. PubMed ID: 30578733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multigeneration cross contamination of mail with Bacillus species spores by tumbling.
    Edmonds J; Clark P; Williams L; Lindquist HD; Martinez K; Gardner W; Shadomy S; Hornsby-Myers J
    Appl Environ Microbiol; 2010 Jul; 76(14):4797-804. PubMed ID: 20511424
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.
    France B; Bell W; Chang E; Scholten T
    PLoS One; 2015; 10(12):e0145799. PubMed ID: 26714315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simulation modeling of anthrax spore dispersion in a bioterrorism incident.
    Reshetin VP; Regens JL
    Risk Anal; 2003 Dec; 23(6):1135-45. PubMed ID: 14641889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay.
    Gut IM; Bartlett RA; Yeager JJ; Leroux B; Ratnesar-Shumate S; Dabisch P; Karaolis DKR
    Appl Environ Microbiol; 2016 May; 82(9):2809-2818. PubMed ID: 26944839
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Release of simulated anthrax particles from disposable respirators.
    Kennedy NJ; Hinds WC
    J Occup Environ Hyg; 2004 Jan; 1(1):7-10. PubMed ID: 15202151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Airborne movement of anthrax spores from carcass sites in the Etosha National Park, Namibia.
    Turnbull PC; Lindeque PM; Le Roux J; Bennett AM; Parks SR
    J Appl Microbiol; 1998 Apr; 84(4):667-76. PubMed ID: 9633664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.