These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19916115)

  • 1. A baseline inhalation toxicity model for narcosis in mammals.
    Veith GD; Petkova EP; Wallace KB
    SAR QSAR Environ Res; 2009 Jul; 20(5-6):567-78. PubMed ID: 19916115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Definition of the structural domain of the baseline non-polar narcosis model for Tetrahymena pyriformis.
    Ellison CM; Cronin MT; Madden JC; Schultz TW
    SAR QSAR Environ Res; 2008; 19(7-8):751-83. PubMed ID: 19061087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review.
    Adhikari C; Mishra BK
    Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural alerts--a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay.
    von der Ohe PC; Kühne R; Ebert RU; Altenburger R; Liess M; Schüürmann G
    Chem Res Toxicol; 2005 Mar; 18(3):536-55. PubMed ID: 15777094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
    Klüver N; Vogs C; Altenburger R; Escher BI; Scholz S
    Chemosphere; 2016 Dec; 164():164-173. PubMed ID: 27588575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A QSAR for baseline toxicity: validation, domain of application, and prediction.
    Oberg T
    Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physicochemical basis of QSARs for baseline toxicity.
    Mackay D; Arnot JA; Petkova EP; Wallace KB; Call DJ; Brooke LT; Veith GD
    SAR QSAR Environ Res; 2009; 20(3-4):393-414. PubMed ID: 19544198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationships for estimating the no-observable-effects concentration in fathead minnows (Pimephales promelas).
    Jones SL; Schultz TW
    Qual Assur; 1995 Sep; 4(3):187-203. PubMed ID: 8705114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of organic chemicals to Tetrahymena pyriformis: effect of polarity and ionization on toxicity.
    Zhao YH; Zhang XJ; Wen Y; Sun FT; Guo Z; Qin WC; Qin HW; Xu JL; Sheng LX; Abraham MH
    Chemosphere; 2010 Mar; 79(1):72-7. PubMed ID: 20079521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish.
    Di Marzio W; Saenz ME
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):256-62. PubMed ID: 15327885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of quantitative structure--activity relationships for assessing the aquatic toxicity of phthalate esters.
    Parkerton TF; Konkel WJ
    Ecotoxicol Environ Saf; 2000 Jan; 45(1):61-78. PubMed ID: 10677269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-linear modeling of bioconcentration using partition coefficients for narcotic chemicals.
    Dimitrov SD; Mekenyan OG; Walker JD
    SAR QSAR Environ Res; 2002 Mar; 13(1):177-84. PubMed ID: 12074386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization.
    Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSARS for toxicity to the bacterium Sinorhizobium meliloti.
    Lessigiarska I; Cronin MT; Worth AP; Dearden JC; Netzeva TI
    SAR QSAR Environ Res; 2004 Jun; 15(3):169-90. PubMed ID: 15293545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the baseline toxicity of non-polar narcotic chemical mixtures by QSAR approach.
    Luan F; Xu X; Liu H; Cordeiro MN
    Chemosphere; 2013 Feb; 90(6):1980-6. PubMed ID: 23177708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action.
    Knauer K; Lampert C; Gonzalez-Valero J
    Chemosphere; 2007 Jul; 68(8):1435-41. PubMed ID: 17512969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.