These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 19916442)
21. Field induced rotational viscosity of ferrofluid: effect of capillary size and magnetic field direction. Andhariya N; Chudasama B; Patel R; Upadhyay RV; Mehta RV J Colloid Interface Sci; 2008 Jul; 323(1):153-7. PubMed ID: 18452937 [TBL] [Abstract][Full Text] [Related]
22. Experimental and theoretical investigations on thermal conductivity of a ferrofluid under the influence of magnetic field. Marin CN; Malaescu I Eur Phys J E Soft Matter; 2020 Sep; 43(9):61. PubMed ID: 33006675 [TBL] [Abstract][Full Text] [Related]
24. High magnetization composite magnetic fluid: structure, magnetorheology and new sealing mechanism in rotating seals. Susan-Resiga D; Socoliuc VM; Borbáth I; Borbáth T; Tripon SC; Bălănean F; Vékás L Soft Matter; 2024 Aug; 20(31):6176-6192. PubMed ID: 39044684 [TBL] [Abstract][Full Text] [Related]
25. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles. Narayanan TN; Mary AP; Swalih PK; Kumar DS; Makarov D; Albrecht M; Puthumana J; Anas A; Anantharaman MR J Nanosci Nanotechnol; 2011 Mar; 11(3):1958-67. PubMed ID: 21449334 [TBL] [Abstract][Full Text] [Related]
26. Synthesis, physicochemical characterization and MR relaxometry of aqueous ferrofluids. Hodenius MA; Niendorf T; Krombach GA; Richtering W; Eckert T; Lueken H; Speldrich M; Günther RW; Baumann M; Soenen SJ; De Cuyper M; Schmitz-Rode T J Nanosci Nanotechnol; 2008 May; 8(5):2399-409. PubMed ID: 18572655 [TBL] [Abstract][Full Text] [Related]
27. Viscosity of magnetorheological fluids using Iron-silicon nanoparticles. Kim JH; Kim C; Lee SG; Hong TM; Choi JH J Nanosci Nanotechnol; 2013 Sep; 13(9):6055-9. PubMed ID: 24205598 [TBL] [Abstract][Full Text] [Related]
28. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Chourpa I; Douziech-Eyrolles L; Ngaboni-Okassa L; Fouquenet JF; Cohen-Jonathan S; Soucé M; Marchais H; Dubois P Analyst; 2005 Oct; 130(10):1395-403. PubMed ID: 16172665 [TBL] [Abstract][Full Text] [Related]
29. Preparation and characterization of magnetizable aerosols. Baumann R; Glöckl G; Nagel S; Weitschies W Eur J Pharm Sci; 2012 Apr; 45(5):693-7. PubMed ID: 22306649 [TBL] [Abstract][Full Text] [Related]
30. The influence of particle clustering on the rheological properties of highly concentrated magnetic nanofluids. Susan-Resiga D; Socoliuc V; Boros T; Borbáth T; Marinica O; Han A; Vékás L J Colloid Interface Sci; 2012 May; 373(1):110-5. PubMed ID: 22134213 [TBL] [Abstract][Full Text] [Related]
31. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling. Soto-Aquino D; Rosso D; Rinaldi C Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497 [TBL] [Abstract][Full Text] [Related]
32. Excellent antimicrobial performance of co-doped magnetite double-layered ferrofluids fabricated from natural sand. Taufiq A; Saputro RE; Yuliantika D; Sunaryono S; Diantoro M; Hidayat A; Hidayat N; Munasir M J King Saud Univ Sci; 2020 Oct; 32(7):3032-3038. PubMed ID: 32837112 [TBL] [Abstract][Full Text] [Related]
33. Experimental Study on Thermal Conductivity and Magnetization Behaviors of Kerosene-Based Ferrofluid Loaded with Multiwalled Carbon Nanotubes. Li Q; Zhao J; Jin L; Li D ACS Omega; 2020 Jun; 5(22):13052-13063. PubMed ID: 32548490 [TBL] [Abstract][Full Text] [Related]
34. Incidence of the Brownian Relaxation Process on the Magnetic Properties of Ferrofluids. Vajtai L; Nemes NM; Morales MDP; Molnár K; Pinke BG; Simon F Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607168 [TBL] [Abstract][Full Text] [Related]
35. Hydrodynamics of chains in ferrofluid-based magnetorheological fluids under rotating magnetic field. Patel R; Chudasama B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):012401. PubMed ID: 19658750 [TBL] [Abstract][Full Text] [Related]
36. Theory of structural transformations in ferrofluids: chains and "gas-liquid" phase transitions. Zubarev AY; Iskakova LY Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061406. PubMed ID: 12188721 [TBL] [Abstract][Full Text] [Related]
37. Magnetoviscosity and relaxation in ferrofluids. Felderhof BU Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3848-54. PubMed ID: 11088903 [TBL] [Abstract][Full Text] [Related]
38. Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties. Morjan I; Alexandrescu R; Dumitrache F; Birjega R; Fleaca C; Soare I; Luculescu CR; Filoti G; Kuncer V; Vekas L; Popa NC; Prodan G; Ciupina V J Nanosci Nanotechnol; 2010 Feb; 10(2):1223-34. PubMed ID: 20352781 [TBL] [Abstract][Full Text] [Related]
39. Viscoelastic properties of ferrofluids. Chirikov DN; Fedotov SP; Iskakova LY; Zubarev AY Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051405. PubMed ID: 21230477 [TBL] [Abstract][Full Text] [Related]