These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19916474)

  • 1. Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition.
    Verissimo C; Aguiar MR; Moshkalev SA
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4459-66. PubMed ID: 19916474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of carbon nanotubes and nanofibers by thermal CVD on SiO2 and Al2O3 support layers.
    Aguiar MR; Verissimo C; Ramos AC; Moshkalev SA; Swart JW
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4143-50. PubMed ID: 19916421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-heating effect on the catalytic growth of partially filled carbon nanotubes by chemical vapor deposition.
    Sengupta J; Jacob C
    J Nanosci Nanotechnol; 2010 May; 10(5):3064-71. PubMed ID: 20358900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition.
    Page AJ; Saha S; Li HB; Irle S; Morokuma K
    J Am Chem Soc; 2015 Jul; 137(29):9281-8. PubMed ID: 26148208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition.
    Picher M; Anglaret E; Arenal R; Jourdain V
    ACS Nano; 2011 Mar; 5(3):2118-25. PubMed ID: 21314174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes.
    Gomez-Ballesteros JL; Balbuena PB
    Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Vapor Deposition of Vertically Aligned Carbon Nanotube Arrays: Critical Effects of Oxide Buffer Layers.
    Li H; Yuan G; Shan B; Zhang X; Ma H; Tian Y; Lu H; Liu J
    Nanoscale Res Lett; 2019 Mar; 14(1):106. PubMed ID: 30900108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply.
    Han ZJ; Levchenko I; Yick S; Ostrikov KK
    Nanoscale; 2011 Nov; 3(11):4848-53. PubMed ID: 22006171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation.
    Hofmann S; Sharma R; Ducati C; Du G; Mattevi C; Cepek C; Cantoro M; Pisana S; Parvez A; Cervantes-Sodi F; Ferrari AC; Dunin-Borkowski R; Lizzit S; Petaccia L; Goldoni A; Robertson J
    Nano Lett; 2007 Mar; 7(3):602-8. PubMed ID: 17319731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.
    Cojocaru CS; Senger A; Le Normand F
    J Nanosci Nanotechnol; 2006 May; 6(5):1331-8. PubMed ID: 16792361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphitic encapsulation of catalyst particles in carbon nanotube production.
    Ding F; Rosén A; Campbell EE; Falk LK; Bolton K
    J Phys Chem B; 2006 Apr; 110(15):7666-70. PubMed ID: 16610858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors governing the growth mode of carbon nanotubes on carbon-based substrates.
    Kim KJ; Yu WR; Youk JH; Lee J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14041-8. PubMed ID: 22990211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Arendse CJ; Malgas GF; Scriba MR; Cummings FR; Knoesen D
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3638-42. PubMed ID: 18330185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes.
    Liu H; Takagi D; Chiashi S; Chokan T; Homma Y
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4068-73. PubMed ID: 20355416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition.
    Tsai SJ; Hofmann M; Hallock M; Ada E; Kong J; Ellenbecker M
    Environ Sci Technol; 2009 Aug; 43(15):6017-23. PubMed ID: 19731712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydrogen on the formation of aligned carbon nanotubes by chemical vapor deposition.
    Dong L; Jiao J; Foxley S; Tuggle DW; Mosher CL; Grathoff GH
    J Nanosci Nanotechnol; 2002 Apr; 2(2):155-60. PubMed ID: 12908303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the graphitization mechanism of SiO(2) nanoparticles in chemical vapor deposition.
    Bachmatiuk A; Börrnert F; Grobosch M; Schäffel F; Wolff U; Scott A; Zaka M; Warner JH; Klingeler R; Knupfer M; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):4098-104. PubMed ID: 19908851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Walled Carbon Nanotube Growth in Multi-Walled Carbon Nanotubes by Chemical Vapor Deposition.
    Hasegawa T; Arenas DJ; Kohno H
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1801-4. PubMed ID: 26353735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.