BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 19916595)

  • 1. Grand canonical steady-state simulation of nucleation.
    Horsch M; Vrabec J
    J Chem Phys; 2009 Nov; 131(18):184104. PubMed ID: 19916595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation.
    Römer F; Kraska T
    J Chem Phys; 2007 Dec; 127(23):234509. PubMed ID: 18154402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation in the grand canonical ensemble.
    Eslami H; Müller-Plathe F
    J Comput Chem; 2007 Jul; 28(10):1763-73. PubMed ID: 17342717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The free energy of the metastable supersaturated vapor via restricted ensemble simulations.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2007 Oct; 127(15):154505. PubMed ID: 17949171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate.
    Horsch M; Vrabec J; Hasse H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011603. PubMed ID: 18763964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory of inhomogeneous liquids. III. Liquid-vapor nucleation.
    Lutsko JF
    J Chem Phys; 2008 Dec; 129(24):244501. PubMed ID: 19123511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of some nucleation theories with a nonsharp droplet-vapor interface.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2010 Oct; 133(15):154503. PubMed ID: 20969399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A random walk through the dynamics of homogeneous vapor-liquid nucleation.
    Huang DM; Attard P
    J Chem Phys; 2005 May; 122(17):174503. PubMed ID: 15910041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.
    Horsch M; Vrabec J; Bernreuther M; Grottel S; Reina G; Wix A; Schaber K; Hasse H
    J Chem Phys; 2008 Apr; 128(16):164510. PubMed ID: 18447462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-size effects in simulations of nucleation.
    Wedekind J; Reguera D; Strey R
    J Chem Phys; 2006 Dec; 125(21):214505. PubMed ID: 17166031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapor-to-droplet transition in a Lennard-Jones fluid: simulation study of nucleation barriers using the ghost field method.
    Neimark AV; Vishnyakov A
    J Phys Chem B; 2005 Mar; 109(12):5962-76. PubMed ID: 16851651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble.
    Kraska T
    J Chem Phys; 2006 Feb; 124(5):054507. PubMed ID: 16468894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relation of interface properties and bulk phase stability: molecular dynamics simulations of carbon dioxide.
    Kraska T; Römer F; Imre AR
    J Phys Chem B; 2009 Apr; 113(14):4688-97. PubMed ID: 19275205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2009 Dec; 131(24):244511. PubMed ID: 20059083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics analysis of multiple site growth and coalescence effects on homogeneous and heterogeneous nucleations.
    Suh D; Yoon W; Shibahara M; Jung S
    J Chem Phys; 2008 Apr; 128(15):154523. PubMed ID: 18433251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal properties of the metastable supersaturated vapor of the Lennard-Jones fluid.
    Linhart A; Chen CC; Vrabec J; Hasse H
    J Chem Phys; 2005 Apr; 122(14):144506. PubMed ID: 15847544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.