These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 19916614)
1. Statistical mechanical theory for nonequilibrium systems. X. Nonequilibrium phase transitions. Attard P J Chem Phys; 2009 Nov; 131(18):184509. PubMed ID: 19916614 [TBL] [Abstract][Full Text] [Related]
2. Statistical mechanical theory for steady state systems. VII. Nonlinear theory. Attard P J Chem Phys; 2007 Jul; 127(1):014503. PubMed ID: 17627356 [TBL] [Abstract][Full Text] [Related]
3. Statistical mechanical theory for non-equilibrium systems. IX. Stochastic molecular dynamics. Attard P J Chem Phys; 2009 May; 130(19):194113. PubMed ID: 19466827 [TBL] [Abstract][Full Text] [Related]
4. Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density. Attard P J Chem Phys; 2006 Jun; 124(22):224103. PubMed ID: 16784259 [TBL] [Abstract][Full Text] [Related]
5. Statistical mechanical theory for steady state systems. VI. Variational principles. Attard P J Chem Phys; 2006 Dec; 125(21):214502. PubMed ID: 17166028 [TBL] [Abstract][Full Text] [Related]
6. Natural convection of a two-dimensional Boussinesq fluid does not maximize entropy production. Bartlett S; Bullock S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023014. PubMed ID: 25215827 [TBL] [Abstract][Full Text] [Related]
7. Mechanical theory of nonequilibrium coexistence and motility-induced phase separation. Omar AK; Row H; Mallory SA; Brady JF Proc Natl Acad Sci U S A; 2023 May; 120(18):e2219900120. PubMed ID: 37094152 [TBL] [Abstract][Full Text] [Related]
8. Statistical mechanical theory for steady state systems. VIII. General theory for a Brownian particle driven by a time- and space-varying force. Attard P; Gray-Weale A J Chem Phys; 2008 Mar; 128(11):114509. PubMed ID: 18361593 [TBL] [Abstract][Full Text] [Related]
9. State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection. Cornick M; Hunt B; Ott E; Kurtuldu H; Schatz MF Chaos; 2009 Mar; 19(1):013108. PubMed ID: 19334972 [TBL] [Abstract][Full Text] [Related]
10. Statistical mechanical theory for the structure of steady state systems: application to a Lennard-Jones fluid with applied temperature gradient. Attard P J Chem Phys; 2004 Oct; 121(15):7076-85. PubMed ID: 15473773 [TBL] [Abstract][Full Text] [Related]
11. Dislocation dynamics in Rayleigh-Bénard convection. Walter T; Pesch W; Bodenschatz E Chaos; 2004 Sep; 14(3):933-9. PubMed ID: 15447003 [TBL] [Abstract][Full Text] [Related]
12. Entropy production and thermodynamics of nonequilibrium stationary states: a point of view. Gallavotti G Chaos; 2004 Sep; 14(3):680-90. PubMed ID: 15446979 [TBL] [Abstract][Full Text] [Related]
13. Entropy production in chiral symmetry breaking transitions. Kondepudi D; Kapcha L Chirality; 2008 Mar; 20(3-4):524-8. PubMed ID: 17963201 [TBL] [Abstract][Full Text] [Related]
14. Statistical mechanical theory for steady state systems. II. Reciprocal relations and the second entropy. Attard P J Chem Phys; 2005 Apr; 122(15):154101. PubMed ID: 15945619 [TBL] [Abstract][Full Text] [Related]
15. Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid. Attard P J Chem Phys; 2005 Jun; 122(24):244105. PubMed ID: 16035744 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of extensive spatiotemporal chaos in Rayleigh-Benard convection. Egolf DA; Melnikov IV; Pesch W; Ecke RE Nature; 2000 Apr; 404(6779):733-6. PubMed ID: 10783880 [TBL] [Abstract][Full Text] [Related]
17. Entropy production as a tool for characterizing nonequilibrium phase transitions. Noa CEF; Harunari PE; de Oliveira MJ; Fiore CE Phys Rev E; 2019 Jul; 100(1-1):012104. PubMed ID: 31499824 [TBL] [Abstract][Full Text] [Related]
19. Theory of relaxation and elasticity in polymer glasses. Chen K; Schweizer KS J Chem Phys; 2007 Jan; 126(1):014904. PubMed ID: 17212516 [TBL] [Abstract][Full Text] [Related]
20. Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions. Schweizer KS J Chem Phys; 2005 Dec; 123(24):244501. PubMed ID: 16396543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]