These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 19916615)
1. Evolution of excess wing and beta-process in simple glass formers. Gainaru C; Kahlau R; Rössler EA; Böhmer R J Chem Phys; 2009 Nov; 131(18):184510. PubMed ID: 19916615 [TBL] [Abstract][Full Text] [Related]
2. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure. Kaminska E; Kaminski K; Paluch M; Ngai KL J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150 [TBL] [Abstract][Full Text] [Related]
3. The dynamic susceptibility in glass forming molecular liquids: the search for universal relaxation patterns II. Blochowicz T; Gainaru C; Medick P; Tschirwitz C; Rössler EA J Chem Phys; 2006 Apr; 124(13):134503. PubMed ID: 16613457 [TBL] [Abstract][Full Text] [Related]
4. Classification of secondary relaxation in glass-formers based on dynamic properties. Ngai KL; Paluch M J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922 [TBL] [Abstract][Full Text] [Related]
5. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol. Yardimci H; Leheny RL J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419 [TBL] [Abstract][Full Text] [Related]
6. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation? Schneider U; Brand R; Lunkenheimer P; Loidl A Phys Rev Lett; 2000 Jun; 84(24):5560-3. PubMed ID: 10990994 [TBL] [Abstract][Full Text] [Related]
7. Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids. Jakobsen B; Niss K; Olsen NB J Chem Phys; 2005 Dec; 123(23):234511. PubMed ID: 16392935 [TBL] [Abstract][Full Text] [Related]
8. Prevalence of approximate square root(t) relaxation for the dielectric alpha process in viscous organic liquids. Nielsen AI; Christensen T; Jakobsen B; Niss K; Olsen NB; Richert R; Dyre JC J Chem Phys; 2009 Apr; 130(15):154508. PubMed ID: 19388760 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition. Jakobsen B; Maggi C; Christensen T; Dyre JC J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409 [TBL] [Abstract][Full Text] [Related]
10. Pressure evolution of the excess wing in a type-B glass former. Casalini R; Roland CM Phys Rev Lett; 2003 Jul; 91(1):015702. PubMed ID: 12906552 [TBL] [Abstract][Full Text] [Related]
11. Influence of structural chemical characteristics on polymer chain dynamics. Sanchis MJ; Domínguez-Espinosa G; Díaz-Calleja R; Guzmán J; Riande E J Chem Phys; 2008 Aug; 129(5):054903. PubMed ID: 18698921 [TBL] [Abstract][Full Text] [Related]
12. Identification of dielectric and structural relaxations in glass-forming secondary amides. Wang LM; Richert R J Chem Phys; 2005 Aug; 123(5):054516. PubMed ID: 16108678 [TBL] [Abstract][Full Text] [Related]
13. Changes of relaxation dynamics of a hydrogen-bonded glass former after removal of the hydrogen bonds. Grzybowska K; Pawlus S; Mierzwa M; Paluch M; Ngai KL J Chem Phys; 2006 Oct; 125(14):144507. PubMed ID: 17042609 [TBL] [Abstract][Full Text] [Related]
14. Shear stress relaxation and physical aging study on simple glass-forming materials. Shi X; Mandanici A; McKenna GB J Chem Phys; 2005 Nov; 123(17):174507. PubMed ID: 16375546 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear dielectric response at the excess wing of glass-forming liquids. Bauer T; Lunkenheimer P; Kastner S; Loidl A Phys Rev Lett; 2013 Mar; 110(10):107603. PubMed ID: 23521298 [TBL] [Abstract][Full Text] [Related]
16. Primary and secondary relaxations in bis-5-hydroxypentylphthalate. Maślanka S; Paluch M; Sułkowski WW; Roland CM J Chem Phys; 2005 Feb; 122(8):84511. PubMed ID: 15836067 [TBL] [Abstract][Full Text] [Related]
17. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions. Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974 [TBL] [Abstract][Full Text] [Related]
18. Origin of the high-frequency contributions to the dielectric loss in supercooled liquids. Hensel-Bielowka S; Paluch M Phys Rev Lett; 2002 Jul; 89(2):025704. PubMed ID: 12097007 [TBL] [Abstract][Full Text] [Related]
19. On the nature of the high-frequency relaxation in a molecular glass former: a joint study of glycerol by field cycling NMR, dielectric spectroscopy, and light scattering. Gainaru C; Lips O; Troshagina A; Kahlau R; Brodin A; Fujara F; Rössler EA J Chem Phys; 2008 May; 128(17):174505. PubMed ID: 18465928 [TBL] [Abstract][Full Text] [Related]
20. Frequency dependent heat capacity within a kinetic model of glassy dynamics. Chakrabarti D; Bagchi B J Chem Phys; 2005 Jan; 122(1):14501. PubMed ID: 15638668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]