BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1991722)

  • 1. p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol.
    Hopper DJ; Bossert ID; Rhodes-Roberts ME
    J Bacteriol; 1991 Feb; 173(3):1298-301. PubMed ID: 1991722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic oxidation of p-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium.
    Bossert ID; Whited G; Gibson DT; Young LY
    J Bacteriol; 1989 Jun; 171(6):2956-62. PubMed ID: 2722739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-cresol and 3,5-xylenol methylhydroxylases in Pseudomonas putida N.C.I.B. 9896.
    Keat MJ; Hopper DJ
    Biochem J; 1978 Nov; 175(2):649-58. PubMed ID: 743215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of active-site components of the putative p-cresol methylhydroxylase membrane complex from Geobacter metallireducens.
    Johannes J; Bluschke A; Jehmlich N; von Bergen M; Boll M
    J Bacteriol; 2008 Oct; 190(19):6493-500. PubMed ID: 18658262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of noncovalent and covalent FAD binding on the redox and catalytic properties of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; McIntire WS
    Biochemistry; 2001 Feb; 40(7):2155-66. PubMed ID: 11329284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The purification and properties of p-cresol-(acceptor) oxidoreductase (hydroxylating), a flavocytochrome from Pseudomonas putida.
    Hopper DJ; Taylor DG
    Biochem J; 1977 Oct; 167(1):155-62. PubMed ID: 588247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox potential of the cytochrome c in the flavocytochrome p-cresol methylhydroxylase.
    Hopper DJ
    FEBS Lett; 1983 Sep; 161(1):100-2. PubMed ID: 6309572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p-Cresol methylhydroxylase. Assay and general properties.
    McIntire W; Hopper DJ; Singer TP
    Biochem J; 1985 Jun; 228(2):325-35. PubMed ID: 2990444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and properties of flavoprotein-cytochrome hybrids by recombination of subunits from different species.
    Koerber SC; Hopper DJ; McIntire WS; Singer TP
    Biochem J; 1985 Oct; 231(2):383-7. PubMed ID: 4062904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of p-cresol methylhydroxylase flavoprotein overproduced by Escherichia coli.
    Engst S; Kuusk V; Efimov I; Cronin CN; McIntire WS
    Biochemistry; 1999 Dec; 38(50):16620-8. PubMed ID: 10600124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic degradation of cresols by denitrifying bacteria.
    Rudolphi A; Tschech A; Fuchs G
    Arch Microbiol; 1991; 155(3):238-48. PubMed ID: 1904702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens.
    Peters F; Heintz D; Johannes J; van Dorsselaer A; Boll M
    J Bacteriol; 2007 Jul; 189(13):4729-38. PubMed ID: 17449613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the spectral and redox properties and covalent flavinylation of the flavoprotein component of p-cresol methylhydroxylase reconstituted with FAD analogues.
    Efimov I; McIntire WS
    Biochemistry; 2004 Aug; 43(32):10532-46. PubMed ID: 15301551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1.
    Reeve CD; Carver MA; Hopper DJ
    Biochem J; 1989 Oct; 263(2):431-7. PubMed ID: 2556994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between charge-transfer interactions, redox potentials, and catalysis for different forms of the flavoprotein component of p-cresol methylhydroxylase.
    Efimov I; McIntire WS
    J Am Chem Soc; 2005 Jan; 127(2):732-41. PubMed ID: 15643899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution of p-cresol methylhydroxylase into catalytically active subunits and reconstitution of the flavocytochrome.
    McIntire W; Singer TP
    FEBS Lett; 1982 Jul; 143(2):316-8. PubMed ID: 7117535
    [No Abstract]   [Full Text] [Related]  

  • 17. Steady-state and stopped-flow kinetic measurements of the primary deuterium isotope effect in the reaction catalyzed by p-cresol methylhydroxylase.
    McIntire WS; Hopper DJ; Singer TP
    Biochemistry; 1987 Jun; 26(13):4107-17. PubMed ID: 3651440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid and sequence analysis of the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase.
    McIntire W; Singer TP; Smith AJ; Mathews FS
    Biochemistry; 1986 Oct; 25(20):5975-81. PubMed ID: 3790500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic oxidation of p-cresol by a denitrifying bacterium.
    Bossert ID; Young LY
    Appl Environ Microbiol; 1986 Nov; 52(5):1117-22. PubMed ID: 3789714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into covalent flavinylation and catalysis from redox, spectral, and kinetic analyses of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; Bergmann DJ; Kuusk V; McIntire WS
    Biochemistry; 2004 May; 43(20):6138-48. PubMed ID: 15147198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.