BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19917262)

  • 1. Accurate guanine:cytosine discrimination in T4 DNA ligase-based single nucleotide polymorphism analysis using an oxanine-containing ligation fragment.
    Pack SP; Doi A; Choi YS; Kim HB; Makino K
    Anal Biochem; 2010 Mar; 398(2):257-9. PubMed ID: 19917262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomolecular response of oxanine in DNA strands to T4 polynucleotide kinase, T4 DNA ligase, and restriction enzymes.
    Pack SP; Doi A; Choi YS; Kodaki T; Makino K
    Biochem Biophys Res Commun; 2010 Jan; 391(1):118-22. PubMed ID: 19900415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of enzymatic recognition of DNA-duplexes containing NO-induced lesions by DNA-relevant enzymes.
    Doi A; Pack SP; Nonogawa M; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):451-2. PubMed ID: 18029781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase.
    Dong L; Mi R; Glass RA; Barry JN; Cao W
    DNA Repair (Amst); 2008 Dec; 7(12):1962-72. PubMed ID: 18789404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligonucleotide ligation assay-based DNA chip for multiplex detection of single nucleotide polymorphism.
    Deng JY; Zhang XE; Mang Y; Zhang ZP; Zhou YF; Liu Q; Lu HB; Fu ZJ
    Biosens Bioelectron; 2004 May; 19(10):1277-83. PubMed ID: 15046760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxanine DNA glycosylase activity from Mammalian alkyladenine glycosylase.
    Hitchcock TM; Dong L; Connor EE; Meira LB; Samson LD; Wyatt MD; Cao W
    J Biol Chem; 2004 Sep; 279(37):38177-83. PubMed ID: 15247209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance.
    Nakatani K; Sando S; Saito I
    Nat Biotechnol; 2001 Jan; 19(1):51-5. PubMed ID: 11135552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous cross-linking by mechlorethamine of DNA duplexes containing C-C mismatch pairs.
    Romero RM; Mitas M; Haworth IS
    Biochemistry; 1999 Mar; 38(12):3641-8. PubMed ID: 10090751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligase-based multiple DNA analysis by using an electrochemical sensor array.
    Wan Y; Zhang J; Liu G; Pan D; Wang L; Song S; Fan C
    Biosens Bioelectron; 2009 Jan; 24(5):1209-12. PubMed ID: 18701273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical synthesis and thermodynamic characterization of oxanine-containing oligodeoxynucleotides.
    Pack SP; Nonogawa M; Kodaki T; Makino K
    Nucleic Acids Res; 2005; 33(18):5771-80. PubMed ID: 16219806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly-efficient T4 DNA ligase-based SNP analysis using a ligation fragment containing a modified nucleobase at the end.
    Jang EK; Yang M; Pack SP
    Chem Commun (Camb); 2015 Aug; 51(66):13090-3. PubMed ID: 26186468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pteridine derivative with electron-withdrawing groups for binding and sensing of nucleobases in AP site-containing DNA duplexes.
    Kanai E; Nishizawa S; Teramae N
    Nucleic Acids Symp Ser (Oxf); 2008; (52):115-6. PubMed ID: 18776280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V.
    Hitchcock TM; Gao H; Cao W
    Nucleic Acids Res; 2004; 32(13):4071-80. PubMed ID: 15289580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the molecular influences of NO-induced lesions in DNA strands on the reactivity of polynucleotide kinases, DNA ligases and DNA polymerases.
    Doi A; Pack SP; Makino K
    J Biochem; 2010 May; 147(5):697-703. PubMed ID: 20097903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mismatch base pair detection by fluorescence spectral change upon addition of metal cation--toward efficient analysis of single nucleotide polymorphism.
    Torigoe H; Ono A; Kozasa T
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1635-9. PubMed ID: 18066842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analyses of the specific interaction between C:C mismatch base pair and silver (I) cation: toward the efficient detection of single nucleotide polymorphism.
    Torigoe H; Kozasa T; Takamori A; Ono A
    Nucleic Acids Symp Ser (Oxf); 2005; (49):217-8. PubMed ID: 17150711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of single-base mutation in RNA using T4 RNA ligase-based nick-joining or DNAzyme-based nick-generation.
    Park K; Choi BR; Kim YS; Shin S; Hah SS; Jung W; Oh S; Kim DE
    Anal Biochem; 2011 Jul; 414(2):303-5. PubMed ID: 21453671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single nucleotide extension technology for quantitative site-specific evaluation of metC/C in GC-rich regions.
    Kaminsky ZA; Assadzadeh A; Flanagan J; Petronis A
    Nucleic Acids Res; 2005 Jun; 33(10):e95. PubMed ID: 15958788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of C:C mismatch base pair by fluorescence spectral change upon addition of silver (I) cation: toward the efficient analyses of single nucleotide polymorphism.
    Torigoe H; Kozasa T; Ono A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):89-90. PubMed ID: 17150831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A colorimetric method for point mutation detection using high-fidelity DNA ligase.
    Li J; Chu X; Liu Y; Jiang JH; He Z; Zhang Z; Shen G; Yu RQ
    Nucleic Acids Res; 2005 Oct; 33(19):e168. PubMed ID: 16257979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.