These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 19917262)
1. Accurate guanine:cytosine discrimination in T4 DNA ligase-based single nucleotide polymorphism analysis using an oxanine-containing ligation fragment. Pack SP; Doi A; Choi YS; Kim HB; Makino K Anal Biochem; 2010 Mar; 398(2):257-9. PubMed ID: 19917262 [TBL] [Abstract][Full Text] [Related]
2. Biomolecular response of oxanine in DNA strands to T4 polynucleotide kinase, T4 DNA ligase, and restriction enzymes. Pack SP; Doi A; Choi YS; Kodaki T; Makino K Biochem Biophys Res Commun; 2010 Jan; 391(1):118-22. PubMed ID: 19900415 [TBL] [Abstract][Full Text] [Related]
3. Comparison of enzymatic recognition of DNA-duplexes containing NO-induced lesions by DNA-relevant enzymes. Doi A; Pack SP; Nonogawa M; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2007; (51):451-2. PubMed ID: 18029781 [TBL] [Abstract][Full Text] [Related]
4. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase. Dong L; Mi R; Glass RA; Barry JN; Cao W DNA Repair (Amst); 2008 Dec; 7(12):1962-72. PubMed ID: 18789404 [TBL] [Abstract][Full Text] [Related]
5. Oligonucleotide ligation assay-based DNA chip for multiplex detection of single nucleotide polymorphism. Deng JY; Zhang XE; Mang Y; Zhang ZP; Zhou YF; Liu Q; Lu HB; Fu ZJ Biosens Bioelectron; 2004 May; 19(10):1277-83. PubMed ID: 15046760 [TBL] [Abstract][Full Text] [Related]
6. Oxanine DNA glycosylase activity from Mammalian alkyladenine glycosylase. Hitchcock TM; Dong L; Connor EE; Meira LB; Samson LD; Wyatt MD; Cao W J Biol Chem; 2004 Sep; 279(37):38177-83. PubMed ID: 15247209 [TBL] [Abstract][Full Text] [Related]
7. Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nakatani K; Sando S; Saito I Nat Biotechnol; 2001 Jan; 19(1):51-5. PubMed ID: 11135552 [TBL] [Abstract][Full Text] [Related]
8. Anomalous cross-linking by mechlorethamine of DNA duplexes containing C-C mismatch pairs. Romero RM; Mitas M; Haworth IS Biochemistry; 1999 Mar; 38(12):3641-8. PubMed ID: 10090751 [TBL] [Abstract][Full Text] [Related]
9. Ligase-based multiple DNA analysis by using an electrochemical sensor array. Wan Y; Zhang J; Liu G; Pan D; Wang L; Song S; Fan C Biosens Bioelectron; 2009 Jan; 24(5):1209-12. PubMed ID: 18701273 [TBL] [Abstract][Full Text] [Related]
10. Chemical synthesis and thermodynamic characterization of oxanine-containing oligodeoxynucleotides. Pack SP; Nonogawa M; Kodaki T; Makino K Nucleic Acids Res; 2005; 33(18):5771-80. PubMed ID: 16219806 [TBL] [Abstract][Full Text] [Related]
11. Highly-efficient T4 DNA ligase-based SNP analysis using a ligation fragment containing a modified nucleobase at the end. Jang EK; Yang M; Pack SP Chem Commun (Camb); 2015 Aug; 51(66):13090-3. PubMed ID: 26186468 [TBL] [Abstract][Full Text] [Related]
12. A pteridine derivative with electron-withdrawing groups for binding and sensing of nucleobases in AP site-containing DNA duplexes. Kanai E; Nishizawa S; Teramae N Nucleic Acids Symp Ser (Oxf); 2008; (52):115-6. PubMed ID: 18776280 [TBL] [Abstract][Full Text] [Related]
13. Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Hitchcock TM; Gao H; Cao W Nucleic Acids Res; 2004; 32(13):4071-80. PubMed ID: 15289580 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the molecular influences of NO-induced lesions in DNA strands on the reactivity of polynucleotide kinases, DNA ligases and DNA polymerases. Doi A; Pack SP; Makino K J Biochem; 2010 May; 147(5):697-703. PubMed ID: 20097903 [TBL] [Abstract][Full Text] [Related]
15. Mismatch base pair detection by fluorescence spectral change upon addition of metal cation--toward efficient analysis of single nucleotide polymorphism. Torigoe H; Ono A; Kozasa T Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1635-9. PubMed ID: 18066842 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic analyses of the specific interaction between C:C mismatch base pair and silver (I) cation: toward the efficient detection of single nucleotide polymorphism. Torigoe H; Kozasa T; Takamori A; Ono A Nucleic Acids Symp Ser (Oxf); 2005; (49):217-8. PubMed ID: 17150711 [TBL] [Abstract][Full Text] [Related]
17. Detection of single-base mutation in RNA using T4 RNA ligase-based nick-joining or DNAzyme-based nick-generation. Park K; Choi BR; Kim YS; Shin S; Hah SS; Jung W; Oh S; Kim DE Anal Biochem; 2011 Jul; 414(2):303-5. PubMed ID: 21453671 [TBL] [Abstract][Full Text] [Related]
18. Single nucleotide extension technology for quantitative site-specific evaluation of metC/C in GC-rich regions. Kaminsky ZA; Assadzadeh A; Flanagan J; Petronis A Nucleic Acids Res; 2005 Jun; 33(10):e95. PubMed ID: 15958788 [TBL] [Abstract][Full Text] [Related]
19. Detection of C:C mismatch base pair by fluorescence spectral change upon addition of silver (I) cation: toward the efficient analyses of single nucleotide polymorphism. Torigoe H; Kozasa T; Ono A Nucleic Acids Symp Ser (Oxf); 2006; (50):89-90. PubMed ID: 17150831 [TBL] [Abstract][Full Text] [Related]
20. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Li J; Chu X; Liu Y; Jiang JH; He Z; Zhang Z; Shen G; Yu RQ Nucleic Acids Res; 2005 Oct; 33(19):e168. PubMed ID: 16257979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]