These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 19917271)
1. Evaluation of medical countermeasures against organophosphorus compounds: the value of experimental data and computer simulations. Worek F; Aurbek N; Herkert NM; John H; Eddleston M; Eyer P; Thiermann H Chem Biol Interact; 2010 Sep; 187(1-3):259-64. PubMed ID: 19917271 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of oxime efficacy in nerve agent poisoning: development of a kinetic-based dynamic model. Worek F; Szinicz L; Eyer P; Thiermann H Toxicol Appl Pharmacol; 2005 Dec; 209(3):193-202. PubMed ID: 15904945 [TBL] [Abstract][Full Text] [Related]
3. Testing of antidotes for organophosphorus compounds: experimental procedures and clinical reality. Eyer P; Szinicz L; Thiermann H; Worek F; Zilker T Toxicology; 2007 Apr; 233(1-3):108-19. PubMed ID: 17010492 [TBL] [Abstract][Full Text] [Related]
4. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis. Aurbek N; Thiermann H; Eyer F; Eyer P; Worek F Toxicology; 2009 May; 259(3):133-9. PubMed ID: 19428953 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis. Worek F; Eyer P; Aurbek N; Szinicz L; Thiermann H Toxicol Appl Pharmacol; 2007 Mar; 219(2-3):226-34. PubMed ID: 17112559 [TBL] [Abstract][Full Text] [Related]
6. Estimation of oxime efficacy in nerve agent poisoning: a kinetic approach. Worek F; Szinicz L; Thiermann H Chem Biol Interact; 2005 Dec; 157-158():349-52. PubMed ID: 16266695 [TBL] [Abstract][Full Text] [Related]
7. Effects of K074 and pralidoxime on antioxidant and acetylcholinesterase response in malathion-poisoned mice. dos Santos AA; dos Santos DB; Ribeiro RP; Colle D; Peres KC; Hermes J; Barbosa AM; Dafré AL; de Bem AF; Kuca K; Farina M Neurotoxicology; 2011 Dec; 32(6):888-95. PubMed ID: 21723318 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of HI 6 treatment after percutaneous VR exposure by use of a kinetic-based dynamic computer model. Aurbek N; Thiermann H; Szinicz L; Worek F Toxicology; 2007 Apr; 233(1-3):173-9. PubMed ID: 16904808 [TBL] [Abstract][Full Text] [Related]
9. Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase. Aurbek N; Thiermann H; Szinicz L; Eyer P; Worek F Toxicology; 2006 Jul; 224(1-2):91-9. PubMed ID: 16720069 [TBL] [Abstract][Full Text] [Related]
10. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Bartling A; Worek F; Szinicz L; Thiermann H Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809 [TBL] [Abstract][Full Text] [Related]
11. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Jokanović M Toxicol Lett; 2009 Oct; 190(2):107-15. PubMed ID: 19651196 [TBL] [Abstract][Full Text] [Related]
12. Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: a theoretical approach. Worek F; Aurbek N; Wille T; Eyer P; Thiermann H J Enzyme Inhib Med Chem; 2011 Jun; 26(3):303-8. PubMed ID: 20807085 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of oxime-induced reactivation of erythrocyte and muscle AChE from different animal species following inhibition by sarin or paraoxon. Herkert NM; Aurbek N; Eyer P; Thiermann H; Worek F Toxicol Lett; 2010 May; 194(3):94-101. PubMed ID: 20156534 [TBL] [Abstract][Full Text] [Related]
14. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Worek F; Thiermann H; Szinicz L; Eyer P Biochem Pharmacol; 2004 Dec; 68(11):2237-48. PubMed ID: 15498514 [TBL] [Abstract][Full Text] [Related]
15. Comparison of human and guinea pig acetylcholinesterase sequences and rates of oxime-assisted reactivation. Cadieux CL; Broomfield CA; Kirkpatrick MG; Kazanski ME; Lenz DE; Cerasoli DM Chem Biol Interact; 2010 Sep; 187(1-3):229-33. PubMed ID: 20433814 [TBL] [Abstract][Full Text] [Related]
16. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship? Aurbek N; Herkert NM; Koller M; Thiermann H; Worek F Chem Biol Interact; 2010 Sep; 187(1-3):215-9. PubMed ID: 20105433 [TBL] [Abstract][Full Text] [Related]
17. Application of kinetic-based computer modelling to evaluate the efficacy of HI 6 in percutaneous VX poisoning. Aurbek N; Thiermann H; Szinicz L; Eyer P; Worek F Toxicology; 2006 Jul; 224(1-2):74-80. PubMed ID: 16740352 [TBL] [Abstract][Full Text] [Related]
18. Structural requirements for effective oximes--evaluation of kinetic in vitro data with phosphylated human AChE and structurally different oximes. Worek F; Wille T; Koller M; Thiermann H Chem Biol Interact; 2013 Mar; 203(1):125-8. PubMed ID: 22827894 [TBL] [Abstract][Full Text] [Related]
19. In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate. Lorke DE; Hasan MY; Arafat K; Kuca K; Musilek K; Schmitt A; Petroianu GA J Appl Toxicol; 2008 May; 28(4):422-9. PubMed ID: 18344198 [TBL] [Abstract][Full Text] [Related]
20. An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes. Luo C; Tong M; Chilukuri N; Brecht K; Maxwell DM; Saxena A Biochemistry; 2007 Oct; 46(42):11771-9. PubMed ID: 17900152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]