These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 1991733)
41. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
42. The putative single-stranded DNA-binding protein of the filamentous bacteriophage, Ifl. Amino acid sequence of the protein and structure of the gene. Carne A; Hill DF; Stockwell PA; Hughes G; Petersen GB Proc Biol Sci; 1991 Jul; 245(1312):23-30. PubMed ID: 1682927 [TBL] [Abstract][Full Text] [Related]
43. Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Boyce JD; Davidson BE; Hillier AJ Appl Environ Microbiol; 1995 Nov; 61(11):4099-104. PubMed ID: 8526524 [TBL] [Abstract][Full Text] [Related]
44. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
45. Analysis of insertion mutants reveals two new genes in the pNRC100 gas vesicle gene cluster of Halobacterium halobium. Jones JG; Hackett NR; Halladay JT; Scothorn DJ; Yang CF; Ng WL; DasSarma S Nucleic Acids Res; 1989 Oct; 17(19):7785-93. PubMed ID: 2552415 [TBL] [Abstract][Full Text] [Related]
46. Characterisation of a repressor gene (xre) and a temperature-sensitive allele from the Bacillus subtilis prophage, PBSX. Wood HE; Devine KM; McConnell DJ Gene; 1990 Nov; 96(1):83-8. PubMed ID: 2125016 [TBL] [Abstract][Full Text] [Related]
47. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010 [TBL] [Abstract][Full Text] [Related]
48. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex. Xu J; Koudelka GB J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081 [TBL] [Abstract][Full Text] [Related]
49. Establishment of lysogeny in bacteriophage 186. DNA binding and transcriptional activation by the CII protein. Shearwin KE; Egan JB J Biol Chem; 2000 Sep; 275(37):29113-22. PubMed ID: 10871623 [TBL] [Abstract][Full Text] [Related]
50. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. Leffers H; Gropp F; Lottspeich F; Zillig W; Garrett RA J Mol Biol; 1989 Mar; 206(1):1-17. PubMed ID: 2495365 [TBL] [Abstract][Full Text] [Related]
51. Sequence of the essential early region of phi C31, a temperate phage of Streptomyces spp. with unusual features in its lytic development. Hartley NM; Murphy GO; Bruton CJ; Chater KF Gene; 1994 Sep; 147(1):29-40. PubMed ID: 8088546 [TBL] [Abstract][Full Text] [Related]
52. Molecular and biochemical analysis of the system regulating the lytic/lysogenic cycle in the pneumococcal temperate phage MM1. Obregón V; García P; López R; García JL FEMS Microbiol Lett; 2003 May; 222(2):193-7. PubMed ID: 12770707 [TBL] [Abstract][Full Text] [Related]
53. The c1 genes of P1 and P7. Osborne FA; Stovall SR; Baumstark BR Nucleic Acids Res; 1989 Oct; 17(19):7671-80. PubMed ID: 2678003 [TBL] [Abstract][Full Text] [Related]
54. The N-terminal domain of the repressor of Staphylococcus aureus phage Φ11 possesses an unusual dimerization ability and DNA binding affinity. Biswas A; Mandal S; Sau S PLoS One; 2014; 9(4):e95012. PubMed ID: 24747758 [TBL] [Abstract][Full Text] [Related]
55. Identification of a phage-coded DNA-binding protein that regulates transcription from late promoters in bacteriophage P4. Polo S; Sturniolo T; Dehó G; Ghisotti D J Mol Biol; 1996 Apr; 257(4):745-55. PubMed ID: 8636979 [TBL] [Abstract][Full Text] [Related]
56. Short N-terminal deletions in the phage phi 29 transcriptional activator protein impair its DNA-binding ability. Rojo F; Salas M Gene; 1990 Nov; 96(1):75-81. PubMed ID: 2125015 [TBL] [Abstract][Full Text] [Related]
57. Repression of the lysogenic P Pedersen M; Neergaard JT; Cassias J; Rasmussen KK; Lo Leggio L; Sneppen K; Hammer K; Kilstrup M Sci Rep; 2020 May; 10(1):8659. PubMed ID: 32457340 [TBL] [Abstract][Full Text] [Related]
58. Genes for the establishment and maintenance of lysogeny by the temperate coliphage 186. Lamont I; Richardson H; Carter DR; Egan JB J Bacteriol; 1993 Aug; 175(16):5286-8. PubMed ID: 8349570 [TBL] [Abstract][Full Text] [Related]
59. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4. Coddeville M; Auvray F; Mikkonen M; Ritzenthaler P Virology; 2007 Aug; 364(2):256-68. PubMed ID: 17412387 [TBL] [Abstract][Full Text] [Related]
60. Identification of an HP1 phage protein required for site-specific excision. Esposito D; Scocca JJ Mol Microbiol; 1994 Aug; 13(4):685-95. PubMed ID: 7997180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]