BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19918834)

  • 1. Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC).
    Yamanaka I; Tazawa S; Murayama T; Iwasaki T; Takenaka S
    ChemSusChem; 2010; 3(1):59-62. PubMed ID: 19918834
    [No Abstract]   [Full Text] [Related]  

  • 2. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).
    Yamanaka I; Onisawa T; Hashimoto T; Murayama T
    ChemSusChem; 2011 Apr; 4(4):494-501. PubMed ID: 21400665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.
    Li W; Bonakdarpour A; Gyenge E; Wilkinson DP
    ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
    Qu L; Liu Y; Baek JB; Dai L
    ACS Nano; 2010 Mar; 4(3):1321-6. PubMed ID: 20155972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan biopolymer for fuel cell applications.
    Ma J; Sahai Y
    Carbohydr Polym; 2013 Feb; 92(2):955-75. PubMed ID: 23399116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell.
    Hassoun J; Croce F; Armand M; Scrosati B
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):2999-3002. PubMed ID: 21365721
    [No Abstract]   [Full Text] [Related]  

  • 8. A nitrogen-doped polyaniline carbon with high electrocatalytic activity and stability for the oxygen reduction reaction in fuel cells.
    Zhong H; Zhang H; Xu Z; Tang Y; Mao J
    ChemSusChem; 2012 Sep; 5(9):1698-702. PubMed ID: 22890976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
    Deng L; Zhou M; Liu C; Liu L; Liu C; Dong S
    Talanta; 2010 Apr; 81(1-2):444-8. PubMed ID: 20188944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell.
    You SJ; Wang JY; Ren NQ; Wang XH; Zhang JN
    ChemSusChem; 2010 Mar; 3(3):334-8. PubMed ID: 20101667
    [No Abstract]   [Full Text] [Related]  

  • 11. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling.
    Yasuda K; Taniguchi A; Akita T; Ioroi T; Siroma Z
    Phys Chem Chem Phys; 2006 Feb; 8(6):746-52. PubMed ID: 16482315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An acrylate-polymer-based electrolyte membrane for alkaline fuel cell applications.
    Luo Y; Guo J; Wang C; Chu D
    ChemSusChem; 2011 Nov; 4(11):1557-60. PubMed ID: 21805679
    [No Abstract]   [Full Text] [Related]  

  • 13. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer.
    Zhao Y; Watanabe K; Hashimoto K
    J Am Chem Soc; 2012 Dec; 134(48):19528-31. PubMed ID: 23151016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction.
    Jaouen F; Herranz J; Lefèvre M; Dodelet JP; Kramm UI; Herrmann I; Bogdanoff P; Maruyama J; Nagaoka T; Garsuch A; Dahn JR; Olson T; Pylypenko S; Atanassov P; Ustinov EA
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1623-39. PubMed ID: 20355776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.
    Wu G; Mack NH; Gao W; Ma S; Zhong R; Han J; Baldwin JK; Zelenay P
    ACS Nano; 2012 Nov; 6(11):9764-76. PubMed ID: 23036092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism.
    Wang Y; Zhou H
    Chem Commun (Camb); 2010 Sep; 46(34):6305-7. PubMed ID: 20668776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the high performance polymer electrolyte membranes for fuel cells.
    Zhang H; Shen PK
    Chem Soc Rev; 2012 Mar; 41(6):2382-94. PubMed ID: 22222889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition.
    Chen S; Wei Z; Li H; Li L
    Chem Commun (Camb); 2010 Dec; 46(46):8782-4. PubMed ID: 20963211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Faradaic electrochemical activation of catalysis.
    Vayenas CG; Koutsodontis CG
    J Chem Phys; 2008 May; 128(18):182506. PubMed ID: 18532791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.
    Navarra MA; Manzi J; Lombardo L; Panero S; Scrosati B
    ChemSusChem; 2011 Jan; 4(1):125-30. PubMed ID: 21226222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.