These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 199190)

  • 1. Modification of phospholipid metabolism in dibutyryl-cAMP-mediated morphological conversion of CHO cells.
    Dosado EA; Hsie AW; Snyder F
    Biochem Biophys Res Commun; 1977 Oct; 78(3):1087-92. PubMed ID: 199190
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of dibutyryl adenosine 3':5'-cyclic monophosphate on the synthesis of glycolipids by normal and transformed Nil cells.
    Sakiyama H; Robbins PW
    Arch Biochem Biophys; 1973 Jan; 154(1):407-14. PubMed ID: 4347686
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of dibutyryl cyclic AMP on lipid synthesis in Microsporum gypseum.
    Vaidya S; Khuller GK
    Biochim Biophys Acta; 1988 Jun; 960(3):435-40. PubMed ID: 2838092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of surfactant phosphatidylglycerol in the lung of fetal and newborn rabbits by dibutyryl adenosine 3':5'-monophosphate.
    Hallman M
    Biochem Biophys Res Commun; 1977 Aug; 77(3):1094-102. PubMed ID: 197948
    [No Abstract]   [Full Text] [Related]  

  • 5. Further studies on the influence of dibutyryl cAMP, theophylline and prostaglandin E1 on composition and biosynthesis of phospholipids in Microsporum gypseum.
    Vaidya S; Khuller GK
    Indian J Biochem Biophys; 1989 Dec; 26(6):367-70. PubMed ID: 2561114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cell cycle specificity of the morphological conversion of chinese hamster ovary cells by N6, O2'-dibutyryl cyclic adenosine 3',5'-phosphate.
    O'Neill JP; Schröder CH; Riddle JC; Hsie AW
    Exp Cell Res; 1976 Jan; 97():213-7. PubMed ID: 173560
    [No Abstract]   [Full Text] [Related]  

  • 7. The regulation of lipogenesis by cyclic nucleotides in intact hepatocytes prepared by a simplified technique.
    Capuzzi DM; Rothman V; Margolis S
    J Biol Chem; 1974 Feb; 249(4):1286-94. PubMed ID: 4360688
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of cyclic AMP analogues and phosphodiesterase inhibitors on phospholipid biosynthesis in fetal type II pneumocytes.
    Aeberhard EE; Scott ML; Barrett CT; Kaplan SA
    Biochim Biophys Acta; 1984 Feb; 803(1-2):29-38. PubMed ID: 6320908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning electron microscopy of induced cell rounding of mouse adrenal cortex tumor cells in culture.
    Cuprak LJ; Lammi CJ; Bayer RC
    Tissue Cell; 1977; 9(4):667-80. PubMed ID: 205010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid and arachidonic acid metabolism in zymosan-stimulated human monocytes: modulation by cAMP.
    Godfrey RW; Manzi RM; Gennaro DE; Hoffstein ST
    J Cell Physiol; 1987 Jun; 131(3):384-92. PubMed ID: 2439518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved maintenance of adult rat alveolar type II cell differentiation in vitro: effect of hydrocortisone and cyclic AMP.
    Kawada H; Shannon JM; Mason RJ
    Biochim Biophys Acta; 1988 Nov; 972(2):152-66. PubMed ID: 2847805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of ketone body production from (14C)palmitate in rat liver mitochondria: effects of cyclic nucleotides and unlabeled fatty acids.
    Amatruda JM; Margolis S; Lockwood DH
    Biochem Biophys Res Commun; 1975 Dec; 67(4):1337-45. PubMed ID: 173341
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of ethanol on membrane lipids: incorporation of palmitate-1-14C into microsomal and mitochondrial lipids in mouse liver.
    Ferrell WJ; Miceli JN
    Q J Stud Alcohol; 1970 Dec; 31(4):810-5. PubMed ID: 5490816
    [No Abstract]   [Full Text] [Related]  

  • 14. An analysis of concanavalin A-mediated agglutination in two Chinese hamster ovary subclones whose surface phenotypes respond to maintenance in medium supplemented with dibutyryl cyclic AMP. V. Biochemical composition of the plasma membrane.
    Noonan KD
    Biochim Biophys Acta; 1979 Feb; 551(1):22-43. PubMed ID: 218629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings: Comparison of cardiovascular effects of dibutyryl cyclic AMP (DBcAMP) and cyclic AMP (cAMP).
    Chiba T; Tamura K; Yamaguchi K; Suzuki I; Akashi A
    Jpn J Pharmacol; 1974; 24(0):s:50. PubMed ID: 4365078
    [No Abstract]   [Full Text] [Related]  

  • 16. D,L-alpha-Fluoropalmitic acid inhibits sphingosine base formation and accumulates in membrane lipids of cultured mammalian cells.
    Soltysiak RM; Matsuura F; Bloomer D; Sweeley CC
    Biochim Biophys Acta; 1984 Feb; 792(2):214-26. PubMed ID: 6696931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of ketogenesis by dibutyryl cyclic AMP in isolated rat hepatocytes.
    Cole RA; Margolis S
    Endocrinology; 1974 May; 94(5):1391-6. PubMed ID: 4362971
    [No Abstract]   [Full Text] [Related]  

  • 18. Lipid metabolism in helminth parasites. II. The major origins of the lipids of Hymenolepis diminuta (Cestoda).
    Ginger CD; Fairbairn D
    J Parasitol; 1966 Dec; 52(6):1097-107. PubMed ID: 5926333
    [No Abstract]   [Full Text] [Related]  

  • 19. Cellular uptake of cyclic AMP captured within phospholipid vesicles and effect on cell-growth behaviour.
    Papahadjopoulos D; Poste G; Mayhew E
    Biochim Biophys Acta; 1974 Sep; 363(3):404-18. PubMed ID: 4376697
    [No Abstract]   [Full Text] [Related]  

  • 20. Cyclic AMP and growth of Ehrlich ascites tumor cells. Lack of cyclic AMP elevation in nutritionally deprived cells and mechanism of retardation of growth by dibutryl cyclic AMP.
    Kaminskas E; Field M; Henshaw EC
    Biochim Biophys Acta; 1976 Sep; 444(2):539-53. PubMed ID: 183828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.