These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19919074)

  • 1. Nascent vibrational energy distributions of O2(X3Sigma(g)-, nu = 6-13) generated in the photolysis of O3 at 266 nm.
    Watanabe S; Usuda SY; Kohguchi H; Yamasaki K
    J Phys Chem A; 2010 Jan; 114(2):735-40. PubMed ID: 19919074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic study of vibrational energy transfer from a wide range of vibrational levels of O2(X(3)Sigma(g)-, v = 6-12) to CF4.
    Watanabe S; Fujii H; Kohguchi H; Hatano T; Tokue I; Yamasaki K
    J Phys Chem A; 2008 Oct; 112(39):9290-5. PubMed ID: 18593107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational relaxation of O2(X3Σ(-)g, v = 6-8) by collisions with O2(X3Σ(-)g, v = 0): solution of the problems in the integrated profiles method.
    Watanabe S; Kohguchi H; Yamasaki K
    J Phys Chem A; 2012 Aug; 116(30):7791-6. PubMed ID: 22747342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient vibrational relaxation of O2(X 3sigma(g)-, nu = 8) by collisions with CF4.
    Yamasaki K; Fujii H; Watanabe S; Hatano T; Tokue I
    Phys Chem Chem Phys; 2006 Apr; 8(16):1936-41. PubMed ID: 16633681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational relaxation of O2(X3 Sigma g-, v = 9-13) by collisions with O2.
    Watanabe S; Usuda SY; Fujii H; Hatano H; Tokue I; Yamasaki K
    Phys Chem Chem Phys; 2007 Aug; 9(31):4407-13. PubMed ID: 17687487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenching and vibrational relaxation of SO(B3Sigma-, v' Hatano T; Watanabe S; Fujii H; Tokue I; Yamasaki K
    J Phys Chem A; 2007 Feb; 111(7):1200-6. PubMed ID: 17256921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct gas-liquid interfacial dynamics: the reaction between O(3P) and a liquid hydrocarbon.
    Köhler SP; Allan M; Costen ML; McKendrick KG
    J Phys Chem B; 2006 Feb; 110(6):2771-6. PubMed ID: 16471884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of the reaction OH + CO → H + CO2 by vibrational excitation of OH.
    Kohno N; Izumi M; Kohguchi H; Yamasaki K
    J Phys Chem A; 2011 May; 115(19):4867-73. PubMed ID: 21510659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational energy transfer in O2(X 3sigma(g)-, upsilon=2,3) + O2 collisions at 330 K.
    Kalogerakis KS; Copeland RA; Slanger TG
    J Chem Phys; 2005 Jul; 123(4):044309. PubMed ID: 16095360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate coefficients for vibrational relaxation of OH(X2Π, v = 1-4) by He.
    Kohno N; Yamashita J; Kadochiku C; Kohguchi H; Yamasaki K
    J Phys Chem A; 2013 Apr; 117(16):3253-9. PubMed ID: 23517222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Vibrational energy transfer from vibrational levels of RbH(X 1sigma+, v = 0-2) to H2].
    Shen XY; Wang SY; Liu J; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):39-42. PubMed ID: 21428051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodissociation dynamics of methyl nitrate at 193 nm: energy disposal in methoxy and nitrogen dioxide products.
    Derro EL; Murray C; Lester MI; Marshall MD
    Phys Chem Chem Phys; 2007 Jan; 9(2):262-71. PubMed ID: 17186070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between electronic and vibrational predissociation dynamics of the HeBr2 and NeBr2 van der Waals molecules.
    Taylor MA; Pio JM; van der Veer WE; Janda KC
    J Chem Phys; 2010 Mar; 132(10):104309. PubMed ID: 20232962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the ultraviolet absorption spectrum of CF2 to determine the spatially resolved absolute CF2 density, rotational temperature, and vibrational distribution in a plasma etching reactor.
    Bulcourt N; Booth JP; Hudson EA; Luque J; Mok DK; Lee EP; Chau FT; Dyke JM
    J Chem Phys; 2004 May; 120(20):9499-508. PubMed ID: 15267961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal state distributions of fragment HCO via S0 and T1 pathways of glyoxal after photolysis in the ultraviolet region.
    Kao CC; Ho ML; Chen MW; Lee SJ; Chen IC
    J Chem Phys; 2004 Mar; 120(11):5087-95. PubMed ID: 15267377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electronic spectrum of the fluoroborane free radical. II. Analysis of laser-induced fluorescence and single vibronic level emission spectra.
    Sunahori FX; Clouthier DJ
    J Chem Phys; 2009 Apr; 130(16):164310. PubMed ID: 19405582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-UV photolysis of substituted phenols, I: 4-fluoro-, 4-chloro- and 4-bromophenol.
    Devine AL; Nix MG; Cronin B; Ashfold MN
    Phys Chem Chem Phys; 2007 Jul; 9(28):3749-62. PubMed ID: 17622410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolysis (193 nm) of SO2: nascent product energy distribution examined through IR emission.
    Ma J; Wilhelm MJ; Smith JM; Dai HL
    J Phys Chem A; 2012 Jan; 116(1):166-73. PubMed ID: 22148244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of internal states of CO from O (1D) + CO determined with time-resolved fourier transform spectroscopy.
    Chen HF; Lee YP
    J Phys Chem A; 2006 Nov; 110(44):12096-102. PubMed ID: 17078603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-color visible/vacuum ultraviolet photoelectron imaging dynamics of Br2.
    Plenge J; Nicolas C; Caster AG; Ahmed M; Leone SR
    J Chem Phys; 2006 Oct; 125(13):133315. PubMed ID: 17029468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.