These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19919128)

  • 1. Identification of restricting factors that inhibit swelling of oxidized myofibrils during brine irrigation.
    Liu Z; Xiong YL; Chen J
    J Agric Food Chem; 2009 Nov; 57(22):10999-1007. PubMed ID: 19919128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems.
    Park D; Xiong YL; Alderton AL; Ooizumi T
    J Agric Food Chem; 2006 Jun; 54(12):4445-51. PubMed ID: 16756379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical susceptibility of myosin in chicken myofibrils subjected to hydroxyl radical oxidizing systems.
    Ooizumi T; Xiong YL
    J Agric Food Chem; 2004 Jun; 52(13):4303-7. PubMed ID: 15212484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase.
    Li C; Xiong YL; Chen J
    J Agric Food Chem; 2012 Aug; 60(32):8020-7. PubMed ID: 22809283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological examinations of oxidatively stressed pork muscle and myofibrils upon salt marination and cooking to elucidate the water-binding potential.
    Liu Z; Xiong YL; Chen J
    J Agric Food Chem; 2011 Dec; 59(24):13026-34. PubMed ID: 22084832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins.
    Sante-Lhoutellier V; Aubry L; Gatellier P
    J Agric Food Chem; 2007 Jun; 55(13):5343-8. PubMed ID: 17530859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein.
    Xiong YL; Blanchard SP; Ooizumi T; Ma Y
    J Food Sci; 2010 Mar; 75(2):C215-21. PubMed ID: 20492228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein oxidation at different salt concentrations affects the cross-linking and gelation of pork myofibrillar protein catalyzed by microbial transglutaminase.
    Li C; Xiong YL; Chen J
    J Food Sci; 2013 Jun; 78(6):C823-31. PubMed ID: 23627930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does oxidation affect the water functionality of myofibrillar proteins?
    Bertram HC; Kristensen M; Østdal H; Baron CP; Young JF; Andersen HJ
    J Agric Food Chem; 2007 Mar; 55(6):2342-8. PubMed ID: 17316016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments.
    Xiong YL; Park D; Ooizumi T
    J Agric Food Chem; 2009 Jan; 57(1):153-9. PubMed ID: 19061417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of porcine Myosin by hypervalent myoglobin: the role of thiol groups.
    Frederiksen AM; Lund MN; Andersen ML; Skibsted LH
    J Agric Food Chem; 2008 May; 56(9):3297-304. PubMed ID: 18393506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The premyofibril: evidence for its role in myofibrillogenesis.
    Rhee D; Sanger JM; Sanger JW
    Cell Motil Cytoskeleton; 1994; 28(1):1-24. PubMed ID: 8044846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface characterization of oxidized myofibrils using X-ray photoelectron spectroscopy and scanning electron microscopy.
    Sun W; Li Q; Zhou F; Zhao H; Zhao M
    J Agric Food Chem; 2014 Jul; 62(30):7507-14. PubMed ID: 25005710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase.
    Li C; Xiong YL
    Meat Sci; 2015 Oct; 108():97-105. PubMed ID: 26068405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of porcine plasma protein hydrolysates on the gelation of porcine myofibrillar protein exposed to a hydroxyl radical-generating system.
    Niu H; Chen Y; Zhang H; Kong B; Liu Q
    Int J Biol Macromol; 2018 Feb; 107(Pt A):654-661. PubMed ID: 28919527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of CapZ during myofibrillogenesis in cultured chicken muscle.
    Schafer DA; Waddle JA; Cooper JA
    Cell Motil Cytoskeleton; 1993; 25(4):317-35. PubMed ID: 8402953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of sodium pyrophosphate on the physicochemical and gelling properties of myofibrillar proteins under hydroxyl radical-induced oxidative stress.
    Cao Y; Ma W; Wang J; Zhang S; Wang Z; Zhao J; Fan X; Zhang D
    Food Funct; 2020 Mar; 11(3):1996-2004. PubMed ID: 32101205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork.
    Lu H; Luo Y; Lametsch R
    Food Chem; 2018 Mar; 243():277-284. PubMed ID: 29146339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation-initiated myosin subfragment cross-linking and structural instability differences between white and red muscle fiber types.
    Liu C; Xiong YL
    J Food Sci; 2015 Feb; 80(2):C288-97. PubMed ID: 25604073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Oxidation in Vitro on Structures and Functions of Myofibrillar Protein from Beef Muscles.
    Fu Q; Liu R; Wang H; Hua C; Song S; Zhou G; Zhang W
    J Agric Food Chem; 2019 May; 67(20):5866-5873. PubMed ID: 31026156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.