These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 19919283)

  • 41. Neural representation of concurrent harmonic sounds in monkey primary auditory cortex: implications for models of auditory scene analysis.
    Fishman YI; Steinschneider M; Micheyl C
    J Neurosci; 2014 Sep; 34(37):12425-43. PubMed ID: 25209282
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Auditory Selectivity for Spectral Contrast in Cortical Neurons and Behavior.
    So NLT; Edwards JA; Woolley SMN
    J Neurosci; 2020 Jan; 40(5):1015-1027. PubMed ID: 31826944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interdependent encoding of pitch, timbre, and spatial location in auditory cortex.
    Bizley JK; Walker KM; Silverman BW; King AJ; Schnupp JW
    J Neurosci; 2009 Feb; 29(7):2064-75. PubMed ID: 19228960
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pitch, harmonicity and concurrent sound segregation: psychoacoustical and neurophysiological findings.
    Micheyl C; Oxenham AJ
    Hear Res; 2010 Jul; 266(1-2):36-51. PubMed ID: 19788920
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Auditory streaming by phase relations between components of harmonic complexes: a comparative study of human subjects and bird forebrain neurons.
    Dolležal LV; Itatani N; Günther S; Klump GM
    Behav Neurosci; 2012 Dec; 126(6):797-808. PubMed ID: 23067380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A physiologically based model for temporal envelope encoding in human primary auditory cortex.
    Dugué P; Le Bouquin-Jeannès R; Edeline JM; Faucon G
    Hear Res; 2010 Sep; 268(1-2):133-44. PubMed ID: 20685388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Auditory response properties of neurons in the putamen and globus pallidus of awake cats.
    Zhong R; Qin L; Sato Y
    J Neurophysiol; 2014 May; 111(10):2124-37. PubMed ID: 24554784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unraveling the principles of auditory cortical processing: can we learn from the visual system?
    King AJ; Nelken I
    Nat Neurosci; 2009 Jun; 12(6):698-701. PubMed ID: 19471268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Processing of complex sounds in the auditory cortex of cat, monkey, and man.
    Rauschecker JP
    Acta Otolaryngol Suppl; 1997; 532():34-8. PubMed ID: 9442842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex.
    Schnupp JW; Hall TM; Kokelaar RF; Ahmed B
    J Neurosci; 2006 May; 26(18):4785-95. PubMed ID: 16672651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust Rate-Place Coding of Resolved Components in Harmonic and Inharmonic Complex Tones in Auditory Midbrain.
    Su Y; Delgutte B
    J Neurosci; 2020 Mar; 40(10):2080-2093. PubMed ID: 31996454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cortical responses in rats predict perceptual sensitivities to complex sounds.
    Orduña I; Mercado E; Gluck MA; Merzenich MM
    Behav Neurosci; 2005 Feb; 119(1):256-64. PubMed ID: 15727530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human cortical dynamics determined by speech fundamental frequency.
    Mäkelä AM; Alku P; Mäkinen V; Valtonen J; May P; Tiitinen H
    Neuroimage; 2002 Nov; 17(3):1300-5. PubMed ID: 12414269
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Harmonic template neurons in primate auditory cortex underlying complex sound processing.
    Feng L; Wang X
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):E840-E848. PubMed ID: 28096341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: electrophysiological evidence.
    Folland NA; Butler BE; Payne JE; Trainor LJ
    J Cogn Neurosci; 2015 May; 27(5):1060-7. PubMed ID: 25436670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Learning Midlevel Auditory Codes from Natural Sound Statistics.
    Młynarski W; McDermott JH
    Neural Comput; 2018 Mar; 30(3):631-669. PubMed ID: 29220308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temporally precise population coding of dynamic sounds by auditory cortex.
    Downer JD; Bigelow J; Runfeldt MJ; Malone BJ
    J Neurophysiol; 2021 Jul; 126(1):148-169. PubMed ID: 34077273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Depth electrode recordings show double dissociation between pitch processing in lateral Heschl's gyrus and sound onset processing in medial Heschl's gyrus.
    Schönwiesner M; Zatorre RJ
    Exp Brain Res; 2008 May; 187(1):97-105. PubMed ID: 18236034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Representation of con-specific vocalizations in the core and belt areas of the auditory cortex in the alert macaque monkey.
    Recanzone GH
    J Neurosci; 2008 Dec; 28(49):13184-93. PubMed ID: 19052209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Network models of frequency modulated sweep detection.
    Skorheim S; Razak K; Bazhenov M
    PLoS One; 2014; 9(12):e115196. PubMed ID: 25514021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.