These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 19919544)
1. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase. Nakai H; Baumann MJ; Petersen BO; Westphal Y; Schols H; Dilokpimol A; Hachem MA; Lahtinen SJ; Duus JØ; Svensson B FEBS J; 2009 Dec; 276(24):7353-65. PubMed ID: 19919544 [TBL] [Abstract][Full Text] [Related]
2. Efficient one-pot enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase. Nakai H; Dilokpimol A; Abou Hachem M; Svensson B Carbohydr Res; 2010 May; 345(8):1061-4. PubMed ID: 20392438 [TBL] [Abstract][Full Text] [Related]
3. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase. Nakai H; Petersen BO; Westphal Y; Dilokpimol A; Abou Hachem M; Duus JØ; Schols HA; Svensson B Protein Eng Des Sel; 2010 Oct; 23(10):781-7. PubMed ID: 20713411 [TBL] [Abstract][Full Text] [Related]
4. Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation. Nakai H; Baumann MJ; Petersen BO; Westphal Y; Hachem MA; Dilokpimol A; Duus JØ; Schols HA; Svensson B FEBS J; 2010 Sep; 277(17):3538-51. PubMed ID: 20681989 [TBL] [Abstract][Full Text] [Related]
5. Biochemical characteristics of maltose phosphorylase MalE from Gao Y; Saburi W; Taguchi Y; Mori H Biosci Biotechnol Biochem; 2019 Nov; 83(11):2097-2109. PubMed ID: 31262243 [TBL] [Abstract][Full Text] [Related]
6. The maltodextrin system of Escherichia coli: metabolism and transport. Dippel R; Boos W J Bacteriol; 2005 Dec; 187(24):8322-31. PubMed ID: 16321936 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic catalysis in crystals of Escherichia coli maltodextrin phosphorylase. Geremia S; Campagnolo M; Schinzel R; Johnson LN J Mol Biol; 2002 Sep; 322(2):413-23. PubMed ID: 12217700 [TBL] [Abstract][Full Text] [Related]
8. Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides. Nihira T; Saito Y; Kitaoka M; Otsubo K; Nakai H Carbohydr Res; 2012 Oct; 360():25-30. PubMed ID: 22940176 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides. Nihira T; Saito Y; Kitaoka M; Nishimoto M; Otsubo K; Nakai H Carbohydr Res; 2012 Nov; 361():49-54. PubMed ID: 22982171 [TBL] [Abstract][Full Text] [Related]
10. Acceptor specificity of cellobiose phosphorylase from Cellvibrio gilvus: synthesis of three branched trisaccharides. Percy A; Ono H; Hayashi K Carbohydr Res; 1998 Jun; 308(3-4):423-9. PubMed ID: 9711833 [TBL] [Abstract][Full Text] [Related]
11. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic synthesis of β-xylosyl-oligosaccharides by transxylosylation using two β-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4. Dilokpimol A; Nakai H; Gotfredsen CH; Appeldoorn M; Baumann MJ; Nakai N; Schols HA; Hachem MA; Svensson B Carbohydr Res; 2011 Feb; 346(3):421-9. PubMed ID: 21215963 [TBL] [Abstract][Full Text] [Related]
13. An 1,4-α-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. Andersen S; Møller MS; Poulsen JN; Pichler MJ; Svensson B; Lo Leggio L; Goh YJ; Abou Hachem M Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32444471 [TBL] [Abstract][Full Text] [Related]
14. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Hamura K; Saburi W; Matsui H; Mori H Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. Watson KA; McCleverty C; Geremia S; Cottaz S; Driguez H; Johnson LN EMBO J; 1999 Sep; 18(17):4619-32. PubMed ID: 10469642 [TBL] [Abstract][Full Text] [Related]
16. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Vigsnaes LK; Nakai H; Hemmingsen L; Andersen JM; Lahtinen SJ; Rasmussen LE; Hachem MA; Petersen BO; Duus JØ; Meyer AS; Licht TR; Svensson B Food Funct; 2013 Apr; 4(5):784-93. PubMed ID: 23580006 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate. Taguchi Y; Saburi W; Imai R; Mori H Biosci Biotechnol Biochem; 2017 Aug; 81(8):1512-1519. PubMed ID: 28537141 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of the Escherichia coli maltodextrin phosphorylase-acarbose complex. O'Reilly M; Watson KA; Johnson LN Biochemistry; 1999 Apr; 38(17):5337-45. PubMed ID: 10220320 [TBL] [Abstract][Full Text] [Related]