These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 19919617)
1. Interaction between phosphorus and biodegradable organic carbon on drinking water biofilm subject to chlorination. Park SK; Hu JY J Appl Microbiol; 2010 Jun; 108(6):2077-87. PubMed ID: 19919617 [TBL] [Abstract][Full Text] [Related]
2. Chlorination of model drinking water biofilm: implications for growth and organic carbon removal. Butterfield PW; Camper AK; Ellis BD; Jones WL Water Res; 2002 Oct; 36(17):4391-405. PubMed ID: 12420943 [TBL] [Abstract][Full Text] [Related]
3. Effects of phosphorus on biofilm disinfections in model drinking water distribution systems. Fang W; Hu J; Ong SL J Water Health; 2010 Sep; 8(3):446-54. PubMed ID: 20375474 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of biofilm community formed in the chlorinated biodegradable organic matter-limited tap water. Park SK; Lee SH; Choi SC; Kim YK Environ Technol; 2006 Apr; 27(4):377-86. PubMed ID: 16583822 [TBL] [Abstract][Full Text] [Related]
5. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. Lehtola MJ; Juhna T; Miettinen IT; Vartiainen T; Martikainen PJ J Ind Microbiol Biotechnol; 2004 Dec; 31(11):489-94. PubMed ID: 15672281 [TBL] [Abstract][Full Text] [Related]
6. Effect of chlorine, biodegradable dissolved organic carbon and suspended bacteria on biofilm development in drinking water systems. Codony F; Morato J; Ribas F; Mas J J Basic Microbiol; 2002; 42(5):311-9. PubMed ID: 12362402 [TBL] [Abstract][Full Text] [Related]
7. Biofilm formation in drinking water affected by low concentrations of phosphorus. Lehtola MJ; Miettinen IT; Martikainen PJ Can J Microbiol; 2002 Jun; 48(6):494-9. PubMed ID: 12166676 [TBL] [Abstract][Full Text] [Related]
8. Influence of phosphorus on biofilm formation in model drinking water distribution systems. Fang W; Hu JY; Ong SL J Appl Microbiol; 2009 Apr; 106(4):1328-35. PubMed ID: 19187141 [TBL] [Abstract][Full Text] [Related]
9. Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Ndiongue S; Huck PM; Slawson RM Water Res; 2005 Mar; 39(6):953-64. PubMed ID: 15766950 [TBL] [Abstract][Full Text] [Related]
10. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system. Lee DG; Park SJ; Kim SJ J Microbiol Biotechnol; 2007 Sep; 17(9):1558-62. PubMed ID: 18062238 [TBL] [Abstract][Full Text] [Related]
11. Involvement of humic substances in regrowth. Camper AK Int J Food Microbiol; 2004 May; 92(3):355-64. PubMed ID: 15145594 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the potential of biofilm control in water supply systems by removal of phosphorus from drinking water. Rubulis J; Juhna T Water Sci Technol; 2007; 55(8-9):211-7. PubMed ID: 17546989 [TBL] [Abstract][Full Text] [Related]
13. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay. Chandy JP; Angles ML Water Res; 2001 Aug; 35(11):2677-82. PubMed ID: 11456167 [TBL] [Abstract][Full Text] [Related]
14. Potential for biofilm development in drinking water distribution systems. van der Kooij D J Appl Microbiol; 1998 Dec; 85 Suppl 1():39S-44S. PubMed ID: 21182691 [TBL] [Abstract][Full Text] [Related]
15. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. Schwartz T; Hoffmann S; Obst U J Appl Microbiol; 2003; 95(3):591-601. PubMed ID: 12911708 [TBL] [Abstract][Full Text] [Related]
16. Effects of pipe materials on chlorine-resistant biofilm formation under long-term high chlorine level. Zhu Z; Wu C; Zhong D; Yuan Y; Shan L; Zhang J Appl Biochem Biotechnol; 2014 Jul; 173(6):1564-78. PubMed ID: 24828580 [TBL] [Abstract][Full Text] [Related]
17. Long-term effects of disinfectants on the community composition of drinking water biofilms. Roeder RS; Lenz J; Tarne P; Gebel J; Exner M; Szewzyk U Int J Hyg Environ Health; 2010 Jun; 213(3):183-9. PubMed ID: 20494617 [TBL] [Abstract][Full Text] [Related]
18. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Nescerecka A; Juhna T; Hammes F Water Res; 2018 May; 135():11-21. PubMed ID: 29448079 [TBL] [Abstract][Full Text] [Related]
19. Chlorine stress mediates microbial surface attachment in drinking water systems. Liu L; Le Y; Jin J; Zhou Y; Chen G Appl Microbiol Biotechnol; 2015 Mar; 99(6):2861-9. PubMed ID: 25359474 [TBL] [Abstract][Full Text] [Related]
20. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature. Torvinen E; Lehtola MJ; Martikainen PJ; Miettinen IT Appl Environ Microbiol; 2007 Oct; 73(19):6201-7. PubMed ID: 17675427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]