BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19919617)

  • 21. Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials.
    Shan L; Zheng W; Xu S; Zhu Z; Pei Y; Bao X; Yuan Y
    Arch Microbiol; 2024 Jun; 206(7):295. PubMed ID: 38856934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect and influence mechanism of biofilm formation on the biological stability of reclaimed water.
    Ren X; Zhang S; Wu M; Xiao B; Miao H; Chen H
    Sci Total Environ; 2024 Jan; 906():167735. PubMed ID: 37827320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of pipe material and chlorination on the biofilm structure and microbial communities.
    Zhang X; Lin T; Jiang F; Zhang X; Wang S; Zhang S
    Chemosphere; 2022 Feb; 289():133218. PubMed ID: 34890609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial repopulation of drinking water pipe walls after chlorination.
    Mathieu L; Francius G; El Zein R; Angel E; Block JC
    Biofouling; 2016 Sep; 32(8):925-34. PubMed ID: 27483985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining chlorination and chloramination processes for the inhibition of biofilm formation in drinking surface water system models.
    Momba MN; Binda MA
    J Appl Microbiol; 2002; 92(4):641-8. PubMed ID: 11966904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of soft deposits from the distribution system improves the drinking water quality.
    Lehtola MJ; Nissinen TK; Miettinen IT; Martikainen PJ; Vartiainen T
    Water Res; 2004 Feb; 38(3):601-10. PubMed ID: 14723929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors affecting bacterial growth in drinking water distribution system.
    Lu W; Zhang XJ
    Biomed Environ Sci; 2005 Apr; 18(2):137-40. PubMed ID: 16001834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system.
    Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J
    Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulation of 2-methylisoborneol (MIB) production by actinomycetes after cyclic chlorination in drinking water distribution systems.
    Abbaszadegan M; Yi M; Alum A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):365-71. PubMed ID: 25723062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms.
    Gagnon GA; Rand JL; O'leary KC; Rygel AC; Chauret C; Andrews RC
    Water Res; 2005 May; 39(9):1809-17. PubMed ID: 15899279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of microbial growth to orthophosphate and organic carbon influx in copper and plastic based plumbing water systems.
    Park SK; Kim YK; Choi SC
    Chemosphere; 2008 Jul; 72(7):1027-34. PubMed ID: 18495203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Biofilm--short characteristic of microbial growth related to drinking water distribution systems].
    Szczotko M
    Rocz Panstw Zakl Hig; 2007; 58(4):667-75. PubMed ID: 18578349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.
    Ginige MP; Wylie J; Plumb J
    Biofouling; 2011 Feb; 27(2):151-63. PubMed ID: 21229405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incorporation of natural uncultivable Legionella pneumophila into potable water biofilms provides a protective niche against chlorination stress.
    Gião MS; Wilks S; Azevedo NF; Vieira MJ; Keevil CW
    Biofouling; 2009; 25(4):335-41. PubMed ID: 19241230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of surface copper content on
    Gomes IB; Simões LC; Simões M
    Biofouling; 2020 Jan; 36(1):1-13. PubMed ID: 31997661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Oxidization characteristic of chlorine on the biofilm in simulated drinking water distribution system].
    Zhang YJ; Zhou LL; Li WY; Li X; Li DQ; Li GB
    Huan Jing Ke Xue; 2009 May; 30(5):1381-5. PubMed ID: 19558105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pilot study of bacteriological population changes through potable water treatment and distribution.
    Norton CD; LeChevallier MW
    Appl Environ Microbiol; 2000 Jan; 66(1):268-76. PubMed ID: 10618235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water.
    Lehtola MJ; Miettinen IT; Vartiainen T; Myllykangas T; Martikainen PJ
    Water Res; 2001 May; 35(7):1635-40. PubMed ID: 11329664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.
    Park SK; Hu JY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):968-77. PubMed ID: 20512722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.