These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 19919669)
21. Proteomic and transcriptomic analysis of selenium utilization in Funkner K; Poehlein A; Jehmlich N; Egelkamp R; Daniel R; von Bergen M; Rother M mSystems; 2024 May; 9(5):e0133823. PubMed ID: 38591896 [TBL] [Abstract][Full Text] [Related]
22. Selenocysteine-independent suppression of UGA codons in the archaeon Methanococcus maripaludis. Seyhan D; Jehmlich N; von Bergen M; Fersch J; Rother M Biochim Biophys Acta; 2015 Nov; 1850(11):2385-92. PubMed ID: 26215786 [TBL] [Abstract][Full Text] [Related]
23. Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation. Tamura T; Yamamoto S; Takahata M; Sakaguchi H; Tanaka H; Stadtman TC; Inagaki K Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16162-7. PubMed ID: 15534230 [TBL] [Abstract][Full Text] [Related]
24. Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate. Lacourciere GM; Mihara H; Kurihara T; Esaki N; Stadtman TC J Biol Chem; 2000 Aug; 275(31):23769-73. PubMed ID: 10829016 [TBL] [Abstract][Full Text] [Related]
25. Trypanosomatid selenophosphate synthetase structure, function and interaction with selenocysteine lyase. da Silva MTA; Silva IRE; Faim LM; Bellini NK; Pereira ML; Lima AL; de Jesus TCL; Costa FC; Watanabe TF; Pereira HD; Valentini SR; Zanelli CF; Borges JC; Dias MVB; da Cunha JPC; Mittra B; Andrews NW; Thiemann OH PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008091. PubMed ID: 33017394 [TBL] [Abstract][Full Text] [Related]
26. The canonical pathway for selenocysteine insertion is dispensable in Trypanosomes. Aeby E; Palioura S; Pusnik M; Marazzi J; Lieberman A; Ullu E; Söll D; Schneider A Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5088-92. PubMed ID: 19279205 [TBL] [Abstract][Full Text] [Related]
27. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Rother M; Resch A; Gardner WL; Whitman WB; Böck A Mol Microbiol; 2001 May; 40(4):900-8. PubMed ID: 11401697 [TBL] [Abstract][Full Text] [Related]
28. Selenium in biology: facts and medical perspectives. Köhrl J; Brigelius-Flohé R; Böck A; Gärtner R; Meyer O; Flohé L Biol Chem; 2000; 381(9-10):849-64. PubMed ID: 11076017 [TBL] [Abstract][Full Text] [Related]
30. Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins. Lacourciere GM; Levine RL; Stadtman TC Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9150-3. PubMed ID: 12084818 [TBL] [Abstract][Full Text] [Related]
31. Selenoprotein synthesis and regulation in Archaea. Rother M; Quitzke V Biochim Biophys Acta Gen Subj; 2018 Nov; 1862(11):2451-2462. PubMed ID: 29656122 [TBL] [Abstract][Full Text] [Related]
32. Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Kim IY; Stadtman TC Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7710-3. PubMed ID: 7644481 [TBL] [Abstract][Full Text] [Related]
33. Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis. Lobanov AV; Hatfield DL; Gladyshev VN Protein Sci; 2008 Jan; 17(1):176-82. PubMed ID: 18156471 [TBL] [Abstract][Full Text] [Related]
34. Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Guimarães MJ; Peterson D; Vicari A; Cocks BG; Copeland NG; Gilbert DJ; Jenkins NA; Ferrick DA; Kastelein RA; Bazan JF; Zlotnik A Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15086-91. PubMed ID: 8986768 [TBL] [Abstract][Full Text] [Related]
35. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Zhang Y; Romero H; Salinas G; Gladyshev VN Genome Biol; 2006; 7(10):R94. PubMed ID: 17054778 [TBL] [Abstract][Full Text] [Related]
36. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide. Kim IY; Veres Z; Stadtman TC J Biol Chem; 1992 Sep; 267(27):19650-4. PubMed ID: 1527085 [TBL] [Abstract][Full Text] [Related]
37. Biosynthesis of selenocysteine on its tRNA in eukaryotes. Xu XM; Carlson BA; Mix H; Zhang Y; Saira K; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL PLoS Biol; 2007 Jan; 5(1):e4. PubMed ID: 17194211 [TBL] [Abstract][Full Text] [Related]
38. Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins. Thomas NA; Jarrell KF J Bacteriol; 2001 Dec; 183(24):7154-64. PubMed ID: 11717274 [TBL] [Abstract][Full Text] [Related]
39. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters. Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082 [TBL] [Abstract][Full Text] [Related]
40. Anucleate and titan cell phenotypes caused by insertional inactivation of the structural maintenance of chromosomes (smc) gene in the archaeon Methanococcus voltae. Long SW; Faguy DM Mol Microbiol; 2004 Jun; 52(6):1567-77. PubMed ID: 15186409 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]