These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 19919677)
1. Staphylococcus aureus SarA is a regulatory protein responsive to redox and pH that can support bacteriophage lambda integrase-mediated excision/recombination. Fujimoto DF; Higginbotham RH; Sterba KM; Maleki SJ; Segall AM; Smeltzer MS; Hurlburt BK Mol Microbiol; 2009 Dec; 74(6):1445-58. PubMed ID: 19919677 [TBL] [Abstract][Full Text] [Related]
2. The molecular basis of co-operative DNA binding between lambda integrase and excisionase. Swalla BM; Cho EH; Gumport RI; Gardner JF Mol Microbiol; 2003 Oct; 50(1):89-99. PubMed ID: 14507366 [TBL] [Abstract][Full Text] [Related]
3. Architectural elements in nucleoprotein complexes: interchangeability of specific and non-specific DNA binding proteins. Segall AM; Goodman SD; Nash HA EMBO J; 1994 Oct; 13(19):4536-48. PubMed ID: 7925295 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Staphylococcus aureus SarA binding sites. Sterba KM; Mackintosh SG; Blevins JS; Hurlburt BK; Smeltzer MS J Bacteriol; 2003 Aug; 185(15):4410-7. PubMed ID: 12867449 [TBL] [Abstract][Full Text] [Related]
5. Mutational analysis of protein binding sites involved in formation of the bacteriophage lambda attL complex. MacWilliams M; Gumport RI; Gardner JF J Bacteriol; 1997 Feb; 179(4):1059-67. PubMed ID: 9023184 [TBL] [Abstract][Full Text] [Related]
6. Synaptic intermediates in bacteriophage lambda site-specific recombination: integrase can align pairs of attachment sites. Segall AM; Nash HA EMBO J; 1993 Dec; 12(12):4567-76. PubMed ID: 8223466 [TBL] [Abstract][Full Text] [Related]
7. A biotin interference assay highlights two different asymmetric interaction profiles for lambda integrase arm-type binding sites in integrative versus excisive recombination. Hazelbaker D; Azaro MA; Landy A J Biol Chem; 2008 May; 283(18):12402-14. PubMed ID: 18319248 [TBL] [Abstract][Full Text] [Related]
8. Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. Christ N; Corona T; Dröge P J Mol Biol; 2002 May; 319(2):305-14. PubMed ID: 12051908 [TBL] [Abstract][Full Text] [Related]
9. Regulation of directionality in bacteriophage lambda site-specific recombination: structure of the Xis protein. Sam MD; Papagiannis CV; Connolly KM; Corselli L; Iwahara J; Lee J; Phillips M; Wojciak JM; Johnson RC; Clubb RT J Mol Biol; 2002 Dec; 324(4):791-805. PubMed ID: 12460578 [TBL] [Abstract][Full Text] [Related]
10. Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. Goodman SD; Nicholson SC; Nash HA Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11910-4. PubMed ID: 1465417 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Tegmark K; Karlsson A; Arvidson S Mol Microbiol; 2000 Jul; 37(2):398-409. PubMed ID: 10931334 [TBL] [Abstract][Full Text] [Related]
12. Molecular interactions between two global regulators, sar and agr, in Staphylococcus aureus. Chien Y; Cheung AL J Biol Chem; 1998 Jan; 273(5):2645-52. PubMed ID: 9446568 [TBL] [Abstract][Full Text] [Related]
13. Architectural flexibility in lambda site-specific recombination: three alternate conformations channel the attL site into three distinct pathways. Segall AM; Nash HA Genes Cells; 1996 May; 1(5):453-63. PubMed ID: 9078377 [TBL] [Abstract][Full Text] [Related]
14. Synapsis of attachment sites during lambda integrative recombination involves capture of a naked DNA by a protein-DNA complex. Richet E; Abcarian P; Nash HA Cell; 1988 Jan; 52(1):9-17. PubMed ID: 2964274 [TBL] [Abstract][Full Text] [Related]
15. Identification of sarV (SA2062), a new transcriptional regulator, is repressed by SarA and MgrA (SA0641) and involved in the regulation of autolysis in Staphylococcus aureus. Manna AC; Ingavale SS; Maloney M; van Wamel W; Cheung AL J Bacteriol; 2004 Aug; 186(16):5267-80. PubMed ID: 15292128 [TBL] [Abstract][Full Text] [Related]
16. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Lewis JA; Hatfull GF Nucleic Acids Res; 2001 Jun; 29(11):2205-16. PubMed ID: 11376138 [TBL] [Abstract][Full Text] [Related]
17. Core-binding specificity of bacteriophage integrases. Gottfried P; Yagil E; Kolot M Mol Gen Genet; 2000 May; 263(4):619-24. PubMed ID: 10852483 [TBL] [Abstract][Full Text] [Related]
18. A structural basis for allosteric control of DNA recombination by lambda integrase. Biswas T; Aihara H; Radman-Livaja M; Filman D; Landy A; Ellenberger T Nature; 2005 Jun; 435(7045):1059-66. PubMed ID: 15973401 [TBL] [Abstract][Full Text] [Related]
19. Viewing single lambda site-specific recombination events from start to finish. Mumm JP; Landy A; Gelles J EMBO J; 2006 Oct; 25(19):4586-95. PubMed ID: 16977316 [TBL] [Abstract][Full Text] [Related]
20. Regulation and characterization of rot transcription in Staphylococcus aureus. Manna AC; Ray B Microbiology (Reading); 2007 May; 153(Pt 5):1538-1545. PubMed ID: 17464068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]