BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19920071)

  • 1. Evaluation of human interindividual variation in bioactivation of estragole using physiologically based biokinetic modeling.
    Punt A; Jeurissen SM; Boersma MG; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2010 Feb; 113(2):337-48. PubMed ID: 19920071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes.
    Jeurissen SM; Punt A; Boersma MG; Bogaards JJ; Fiamegos YC; Schilter B; van Bladeren PJ; Cnubben NH; Rietjens IM
    Chem Res Toxicol; 2007 May; 20(5):798-806. PubMed ID: 17407329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat.
    Punt A; Freidig AP; Delatour T; Scholz G; Boersma MG; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):248-59. PubMed ID: 18539307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect.
    Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations.
    Al-Subeihi AA; Alhusainy W; Kiwamoto R; Spenkelink B; van Bladeren PJ; Rietjens IM; Punt A
    Toxicol Appl Pharmacol; 2015 Mar; 283(2):117-26. PubMed ID: 25549870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats.
    Punt A; Paini A; Boersma MG; Freidig AP; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2009 Aug; 110(2):255-69. PubMed ID: 19447879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes.
    Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix modulation of the bioactivation of estragole by constituents of different alkenylbenzene-containing herbs and spices and physiologically based biokinetic modeling of possible in vivo effects.
    Alhusainy W; van den Berg SJ; Paini A; Campana A; Asselman M; Spenkelink A; Punt A; Scholz G; Schilter B; Adams TB; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2012 Sep; 129(1):174-87. PubMed ID: 22649189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats.
    Martati E; Boersma MG; Spenkelink A; Khadka DB; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2011 Jun; 24(6):818-34. PubMed ID: 21446753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucuronidation of 1'-hydroxyestragole (1'-HE) by human UDP-glucuronosyltransferases UGT2B7 and UGT1A9.
    Iyer LV; Ho MN; Shinn WM; Bradford WW; Tanga MJ; Nath SS; Green CE
    Toxicol Sci; 2003 May; 73(1):36-43. PubMed ID: 12657745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes involved in the metabolism of the carcinogen 2-nitroanisole: evidence for its oxidative detoxication by human cytochromes P450.
    Miksanová M; Sulc M; Rýdlová H; Schmeiser HH; Frei E; Stiborová M
    Chem Res Toxicol; 2004 May; 17(5):663-71. PubMed ID: 15144223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on inter-ethnic human differences in bioactivation and detoxification of estragole using physiologically based kinetic modeling.
    Ning J; Louisse J; Spenkelink B; Wesseling S; Rietjens IMCM
    Arch Toxicol; 2017 Sep; 91(9):3093-3108. PubMed ID: 28357488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico methods for physiologically based biokinetic models describing bioactivation and detoxification of coumarin and estragole: implications for risk assessment.
    Rietjens IM; Punt A; Schilter B; Scholz G; Delatour T; van Bladeren PJ
    Mol Nutr Food Res; 2010 Feb; 54(2):195-207. PubMed ID: 19943261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically based biokinetic (PBBK) modeling of safrole bioactivation and detoxification in humans as compared with rats.
    Martati E; Boersma MG; Spenkelink A; Khadka DB; van Bladeren PJ; Rietjens IM; Punt A
    Toxicol Sci; 2012 Aug; 128(2):301-16. PubMed ID: 22588462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of estragole in rat and mouse and influence of dose size on excretion of the proximate carcinogen 1'-hydroxyestragole.
    Anthony A; Caldwell J; Hutt AJ; Smith RL
    Food Chem Toxicol; 1987 Nov; 25(11):799-806. PubMed ID: 3121480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human cytochrome p450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1'-hydroxysafrole.
    Jeurissen SM; Bogaards JJ; Awad HM; Boersma MG; Brand W; Fiamegos YC; van Beek TA; Alink GM; Sudhölter EJ; Cnubben NH; Rietjens IM
    Chem Res Toxicol; 2004 Sep; 17(9):1245-50. PubMed ID: 15377158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes.
    Yamazaki H; Guo Z; Persmark M; Mimura M; Inoue K; Guengerich FP; Shimada T
    Mol Pharmacol; 1994 Sep; 46(3):568-77. PubMed ID: 7935340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2.
    Raza H; King RS; Squires RB; Guengerich FP; Miller DW; Freeman JP; Lang NP; Kadlubar FF
    Drug Metab Dispos; 1996 Apr; 24(4):395-400. PubMed ID: 8801053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes.
    Yamazaki H; Shaw PM; Guengerich FP; Shimada T
    Chem Res Toxicol; 1998 Jun; 11(6):659-65. PubMed ID: 9625734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.