BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 19920311)

  • 1. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering.
    Hedrick TL; Daniel TL
    J Exp Biol; 2006 Aug; 209(Pt 16):3114-30. PubMed ID: 16888060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic deformation and energy loss of flapping fly wings.
    Lehmann FO; Gorb S; Nasir N; Schützner P
    J Exp Biol; 2011 Sep; 214(Pt 17):2949-61. PubMed ID: 21832138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force measurements of flexible tandem wings in hovering and forward flights.
    Zheng Y; Wu Y; Tang H
    Bioinspir Biomim; 2015 Feb; 10(1):016021. PubMed ID: 25656164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wing kinematics measurement and aerodynamics of hovering droneflies.
    Liu Y; Sun M
    J Exp Biol; 2008 Jul; 211(Pt 13):2014-25. PubMed ID: 18552290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of wing deformation on aerodynamic forces in hovering hoverflies.
    Du G; Sun M
    J Exp Biol; 2010 Jul; 213(Pt 13):2273-83. PubMed ID: 20543126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.
    Usherwood JR
    Bioinspir Biomim; 2009 Mar; 4(1):015003. PubMed ID: 19258692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of the hovering efficiency of flapping and revolving wings.
    Zheng L; Hedrick T; Mittal R
    Bioinspir Biomim; 2013 Sep; 8(3):036001. PubMed ID: 23680659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.
    Song J; Luo H; Hedrick TL
    Bioinspir Biomim; 2015 Jan; 10(1):016007. PubMed ID: 25599381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies.
    Ishihara D; Horie T; Niho T
    Bioinspir Biomim; 2014 Nov; 9(4):046009. PubMed ID: 25378268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bio-inspired study on tidal energy extraction with flexible flapping wings.
    Liu W; Xiao Q; Cheng F
    Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex.
    Bomphrey RJ; Lawson NJ; Harding NJ; Taylor GK; Thomas AL
    J Exp Biol; 2005 Mar; 208(Pt 6):1079-94. PubMed ID: 15767309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.
    Kim JK; Han JH
    Bioinspir Biomim; 2014 Mar; 9(1):016011. PubMed ID: 24451177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.