These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19921170)

  • 1. Phase transition kinetics of lipid bilayer membranes studied by time-resolved pressure perturbation calorimetry.
    Schiewek M; Blume A
    Eur Biophys J; 2010 Apr; 39(5):815-24. PubMed ID: 19921170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure jump relaxation investigations of lipid membranes using FTIR spectroscopy.
    Schiewek M; Blume A
    Eur Biophys J; 2009 Feb; 38(2):219-28. PubMed ID: 18830592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of pressure perturbation calorimetry to lipid bilayers.
    Heerklotz H; Seelig J
    Biophys J; 2002 Mar; 82(3):1445-52. PubMed ID: 11867459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimyristoylphosphatidic acid/cholesterol bilayers. Thermodynamic properties and kinetics of the phase transition as studied by the pressure jump relaxation technique.
    Blume A; Hillmann M
    Eur Biophys J; 1986; 13(6):343-53. PubMed ID: 3757929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of lamellar-to-cubic and intercubic phase transitions of pure and cytochrome c containing monoolein dispersions monitored by time-resolved small-angle X-ray diffraction.
    Kraineva J; Narayanan RA; Kondrashkina E; Thiyagarajan P; Winter R
    Langmuir; 2005 Apr; 21(8):3559-71. PubMed ID: 15807602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes.
    Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN
    Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides.
    Pedersen TB; Kaasgaard T; Jensen MØ; Frokjaer S; Mouritsen OG; Jørgensen K
    Biophys J; 2005 Oct; 89(4):2494-503. PubMed ID: 16100273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the crystalline-liquid crystalline phase transition of dimyristoyl L-alpha-lecithin bilayers.
    Tsong TY
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2684-8. PubMed ID: 4527862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry.
    Tsamaloukas A; Szadkowska H; Slotte PJ; Heerklotz H
    Biophys J; 2005 Aug; 89(2):1109-19. PubMed ID: 15923231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol.
    Lewis RN; Zhang YP; McElhaney RN
    Biochim Biophys Acta; 2005 Mar; 1668(2):203-14. PubMed ID: 15737331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation dynamics of the gel to liquid-crystalline transition of phosphatidylcholine bilayers. Effects of chainlength and vesicle size.
    van Osdol WW; Johnson ML; Ye Q; Biltonen RL
    Biophys J; 1991 Apr; 59(4):775-85. PubMed ID: 2065185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic analysis of differential scanning calorimetry data.
    Lopez Mayorga O; Freire E
    Biophys Chem; 1987 Jul; 27(1):87-96. PubMed ID: 3607241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperativity and kinetics of phase transitions in nanopore-confined bilayers studied by differential scanning calorimetry.
    Alaouie AM; Smirnov AI
    Biophys J; 2005 Feb; 88(2):L11-3. PubMed ID: 15626698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transition of a DPPC bilayer induced by an external surface pressure: from bilayer to monolayer behavior. a molecular dynamics simulation study.
    López Cascales JJ; Otero TF; Fernandez Romero AJ; Camacho L
    Langmuir; 2006 Jun; 22(13):5818-24. PubMed ID: 16768513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetric and theoretical studies of the effects of lindane on lipid bilayers of different acyl chain length.
    Sabra MC; Jørgensen K; Mouritsen OG
    Biochim Biophys Acta; 1995 Jan; 1233(1):89-104. PubMed ID: 7530493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical changes induced by xenon on phospholipid bilayers.
    Booker RD; Sum AK
    Biochim Biophys Acta; 2013 May; 1828(5):1347-56. PubMed ID: 23376329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M; Smit B; Sperotto MM
    Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition path sampling study of flip-flop transitions in model lipid bilayer membranes.
    Martí J; Csajka FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061918. PubMed ID: 15244628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological development of multilamellar phospholipid film depending on drying kinetics.
    Hishida M; Yamada NL; Yoshikawa K; Seto H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051407. PubMed ID: 20364985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural calorimetry of main transition of supported DMPC bilayers by temperature-controlled AFM.
    Enders O; Ngezahayo A; Wiechmann M; Leisten F; Kolb HA
    Biophys J; 2004 Oct; 87(4):2522-31. PubMed ID: 15454447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.