These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 19921178)

  • 1. Engineering lower inhibitor affinities in beta-D-xylosidase.
    Fan Z; Yuan L; Jordan DB; Wagschal K; Heng C; Braker JD
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1099-113. PubMed ID: 19921178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering lower inhibitor affinities in β-D-xylosidase of Selenomonas ruminantium by site-directed mutagenesis of Trp145.
    Jordan DB; Wagschal K; Fan Z; Yuan L; Braker JD; Heng C
    J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1821-35. PubMed ID: 21528413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-D-xylosidase from Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates.
    Jordan DB
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):137-49. PubMed ID: 18421594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. beta-D-Xylosidase from Selenomonas ruminantium: role of glutamate 186 in catalysis revealed by site-directed mutagenesis, alternate substrates, and active-site inhibitor.
    Jordan DB; Braker JD
    Appl Biochem Biotechnol; 2010 May; 161(1-8):395-410. PubMed ID: 20127424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-D-xylosidase from Selenomonas ruminantium of glycoside hydrolase family 43.
    Jordan DB; Li XL; Dunlap CA; Whitehead TR; Cotta MA
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):93-104. PubMed ID: 18478379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the two-subsite beta-d-xylosidase from Selenomonas ruminantium by sugars: competitive, noncompetitive, double binding, and slow binding modes.
    Jordan DB; Braker JD
    Arch Biochem Biophys; 2007 Sep; 465(1):231-46. PubMed ID: 17588525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties and applications of microbial beta-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium.
    Jordan DB; Wagschal K
    Appl Microbiol Biotechnol; 2010 May; 86(6):1647-58. PubMed ID: 20352422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoalcohols as probes of the two-subsite active site of beta-D-xylosidase from Selenomonas ruminantium.
    Jordan DB; Mertens JA; Braker JD
    Biochim Biophys Acta; 2009 Jan; 1794(1):144-58. PubMed ID: 18973836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the two-subsite beta-d-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane.
    Brunzelle JS; Jordan DB; McCaslin DR; Olczak A; Wawrzak Z
    Arch Biochem Biophys; 2008 Jun; 474(1):157-66. PubMed ID: 18374656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing influences by subsite -1 and subsite +1 residues on relative xylopyranosidase/arabinofuranosidase activities of bifunctional β-D-xylosidase/α-L-arabinofuranosidase.
    Jordan DB; Braker JD
    Biochim Biophys Acta; 2011 Dec; 1814(12):1648-57. PubMed ID: 21889620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-D-xylosidase from Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions.
    Jordan DB; Braker JD
    Appl Biochem Biotechnol; 2009 May; 155(1-3):330-46. PubMed ID: 18953511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epoxyalkyl glycosides of D-xylose and xylo-oligosaccharides are active-site markers of xylanases from glycoside hydrolase family 11, not from family 10.
    Ntarima P; Nerinckx W; Klarskov K; Devreese B; Bhat MK; Van Beeumen J; Claeyssens M
    Biochem J; 2000 May; 347 Pt 3(Pt 3):865-73. PubMed ID: 10769193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6.
    Shallom D; Leon M; Bravman T; Ben-David A; Zaide G; Belakhov V; Shoham G; Schomburg D; Baasov T; Shoham Y
    Biochemistry; 2005 Jan; 44(1):387-97. PubMed ID: 15628881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering disulfide bonds in Selenomonas ruminantium β-xylosidase by experimental and computational methods.
    Dehnavi E; Fathi-Roudsari M; Mirzaie S; Arab SS; Ranaei Siadat SO; Khajeh K
    Int J Biol Macromol; 2017 Feb; 95():248-255. PubMed ID: 27818293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of Selenomonas ruminantium β-xylosidase thermal stability by replacing buried free cysteines via site directed mutagenesis.
    Dehnavi E; Moeini S; Akbarzadeh A; Dabirmanesh B; Siadat SOR; Khajeh K
    Int J Biol Macromol; 2019 Sep; 136():352-358. PubMed ID: 31220489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [High-level expression and characterization of Selenomonas ruminantium β-xylosidase in Pichia pastoris].
    Fu T; Hu W; Chen Y; Wei H; Yang G
    Sheng Wu Gong Cheng Xue Bao; 2017 May; 33(5):785-795. PubMed ID: 28876033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A xylose-tolerant beta-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase.
    Yan QJ; Wang L; Jiang ZQ; Yang SQ; Zhu HF; Li LT
    Bioresour Technol; 2008 Sep; 99(13):5402-10. PubMed ID: 18180153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant.
    Schmidt A; Gübitz GM; Kratky C
    Biochemistry; 1999 Feb; 38(8):2403-12. PubMed ID: 10029534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.
    Hrmova M; Fincher GB
    Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.