These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19921293)

  • 1. A plate method for screening of bacteria capable of degrading aliphatic nitriles.
    Santoshkumar M; Nayak AS; Anjaneya O; Karegoudar TB
    J Ind Microbiol Biotechnol; 2010 Jan; 37(1):111-5. PubMed ID: 19921293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of organic cyanides by Pseudomonas aeruginosa.
    Nawaz MS; Davis JW; Wolfram JH; Chapatwala KD
    Appl Biochem Biotechnol; 1991; 28-29():865-75. PubMed ID: 1929388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of acetonitrile and other aliphatic nitriles by a Candida famata strain.
    Linardi VR; Dias JC; Rosa CA
    FEMS Microbiol Lett; 1996 Oct; 144(1):67-71. PubMed ID: 8870254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas marginalis: its degradative capability on organic nitriles and amides.
    Babu GR; Wolfram JH; Marian JM; Chapatwala KD
    Appl Microbiol Biotechnol; 1995; 43(4):739-45. PubMed ID: 7546612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.
    Fang S; An X; Liu H; Cheng Y; Hou N; Feng L; Huang X; Li C
    Bioresour Technol; 2015 Jun; 185():28-34. PubMed ID: 25746475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous degradation of acetonitrile and biphenyl by Pseudomonas aeruginosa.
    Nawaz MS; Chapatwala KD
    Can J Microbiol; 1991 Jun; 37(6):411-8. PubMed ID: 1913344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic degradation of nitriles by a Candida guilliermondii UFMG-Y65.
    Dias JC; Rezende RP; Rosa CA; Lachance MA; Linardi VR
    Can J Microbiol; 2000 Jun; 46(6):525-31. PubMed ID: 10913974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The isolation and characterization of the novel chlorothalonil-degrading strain Paracoccus sp. XF-3 and the cloning of the chd gene.
    Yue W; Xiong M; Li F; Wang G
    J Biosci Bioeng; 2015 Nov; 120(5):544-8. PubMed ID: 26100322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Brunner S; Eppinger E; Fischer S; Gröning J; Stolz A
    World J Microbiol Biotechnol; 2018 Jun; 34(7):91. PubMed ID: 29896645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of aliphatic 2-acetoxynitriles by nitrile-hydrolysing bacteria.
    Heinemann U; Kiziak C; Zibek S; Layh N; Schmidt M; Griengl H; Stolz A
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):274-81. PubMed ID: 12845494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple, efficient and rapid screening technique for differentiating nitrile hydratase and nitrilase producing bacteria.
    Sahu R; Meghavarnam AK; Janakiraman S
    Biotechnol Rep (Amst); 2019 Dec; 24():e00396. PubMed ID: 31799145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of pyridine by Paracoccus sp. isolated from contaminated soil.
    Qiao L; Wang JL
    J Hazard Mater; 2010 Apr; 176(1-3):220-5. PubMed ID: 19945787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms.
    Li T; Liu J; Bai R; Ohandja DG; Wong FS
    Water Res; 2007 Aug; 41(15):3465-73. PubMed ID: 17544472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov.
    Sorokin DY; van Pelt S; Tourova TP; Evtushenko LI
    Int J Syst Evol Microbiol; 2009 Feb; 59(Pt 2):248-53. PubMed ID: 19196761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits.
    Sahoo B; Ningthoujam R; Chaudhuri S
    Int Microbiol; 2019 Mar; 22(1):155-167. PubMed ID: 30810939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21.
    DiGeronimo MJ; Antoine AD
    Appl Environ Microbiol; 1976 Jun; 31(6):900-6. PubMed ID: 938041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and genome functional analysis of an efficient nitrile-degrading bacterium, Rhodococcus rhodochrous BX2, to lay the foundation for potential bioaugmentation for remediation of nitrile-contaminated environments.
    An X; Cheng Y; Miao L; Chen X; Zang H; Li C
    J Hazard Mater; 2020 May; 389():121906. PubMed ID: 31874764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A newly isolated Streptomyces rimosus strain capable of degrading deltamethrin as a pesticide in agricultural soil.
    Khajezadeh M; Abbaszadeh-Goudarzi K; Pourghadamyari H; Kafilzadeh F
    J Basic Microbiol; 2020 May; 60(5):435-443. PubMed ID: 32128846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enhancement strategy for the biodegradation of high-concentration aliphatic nitriles: Utilizing the glucose-mediated carbon catabolite repression mechanism.
    Li C; Chen X; Wen L; Cheng Y; An X; Li T; Zang H; Zhao X; Li D; Hou N
    Environ Pollut; 2020 Oct; 265(Pt A):114302. PubMed ID: 32480233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of deltamethrin to Eriocheir sinensis and the isolation of a deltamethrin-degrading bacterium, Paracoccus sp. P-2.
    Ning M; Hao W; Cao C; Xie X; Fan W; Huang H; Yue Y; Tang M; Wang W; Gu W; Meng Q
    Chemosphere; 2020 Oct; 257():127162. PubMed ID: 32485514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.