These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19921293)

  • 41. Agar plate method for detection and enumeration of alkylbenzenesulfonate-degrading microorganisms.
    Owada K
    Appl Microbiol; 1975 Jan; 29(1):40-3. PubMed ID: 234155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Utilization of acrylonitrile by bacteria isolated from petrochemical waste waters.
    Narayanasamy K; Shukla S; Parekh LJ
    Indian J Exp Biol; 1990 Oct; 28(10):968-71. PubMed ID: 2279769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate.
    Kniemeyer O; Probian C; Rosselló-Mora R; Harder J
    Appl Environ Microbiol; 1999 Aug; 65(8):3319-24. PubMed ID: 10427013
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradative capability of Pseudomonas putida on acetonitrile.
    Chapatwala KD; Babu GR; Dudley C; Williams R; Aremu K
    Appl Biochem Biotechnol; 1993; 39-40():655-66. PubMed ID: 8323268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new pH indicator dye-based method for rapid and efficient screening of l-asparaginase producing microorganisms.
    Mihooliya KN; Nandal J; Swami L; Verma H; Chopra L; Sahoo DK
    Enzyme Microb Technol; 2017 Dec; 107():72-81. PubMed ID: 28899490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation and characterization of acetonitrile utilizing bacteria.
    Chapatwala KD; Nawaz MS; Richardson JD; Wolfram JH
    J Ind Microbiol; 1990; 5(2-3):65-70. PubMed ID: 1367463
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation and characterization of a denitrifying monocrotophos-degrading Paracoccus sp. M-1.
    Jia KZ; Cui ZL; He J; Guo P; Li SP
    FEMS Microbiol Lett; 2006 Oct; 263(2):155-62. PubMed ID: 16978350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes.
    Cowan D; Cramp R; Pereira R; Graham D; Almatawah Q
    Extremophiles; 1998 Aug; 2(3):207-16. PubMed ID: 9783167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial isolates degrading aliphatic polycarbonates.
    Suyama T; Hosoya H; Tokiwa Y
    FEMS Microbiol Lett; 1998 Apr; 161(2):255-61. PubMed ID: 9570117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation and characterization of dibenzofuran-degrading Serratia marcescens from alkalophilic bacterial consortium of the chemostat.
    Jaiswal PK; Thakur IS
    Curr Microbiol; 2007 Nov; 55(5):447-54. PubMed ID: 17710482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrolysis of nitriles by soil bacteria: variation with soil origin.
    Rapheeha OK; Roux-van der Merwe MP; Badenhorst J; Chhiba V; Bode ML; Mathiba K; Brady D
    J Appl Microbiol; 2017 Mar; 122(3):686-697. PubMed ID: 27930842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase.
    Holtze MS; Sørensen J; Hansen HC; Aamand J
    Biodegradation; 2006 Dec; 17(6):503-10. PubMed ID: 16496093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualization of enzyme-catalyzed reactions using pH indicators: rapid screening of hydrolase libraries and estimation of the enantioselectivity.
    Morís-Varas F; Shah A; Aikens J; Nadkarni NP; Rozzell JD; Demirjian DC
    Bioorg Med Chem; 1999 Oct; 7(10):2183-8. PubMed ID: 10579524
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a novel nitrilase, BGC4, from Paraburkholderia graminis showing wide-spectrum substrate specificity, a potential versatile biocatalyst for the degradation of nitriles.
    Fan H; Chen L; Sun H; Wang H; Liu Q; Ren Y; Wei D
    Biotechnol Lett; 2017 Nov; 39(11):1725-1731. PubMed ID: 28762035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradation of cyanide compounds by a Pseudomonas species (S1).
    Dhillon JK; Shivaraman N
    Can J Microbiol; 1999 Mar; 45(3):201-8. PubMed ID: 10408092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions.
    Baek SH; Kim KH; Yin CR; Jeon CO; Im WT; Kim KK; Lee ST
    Curr Microbiol; 2003 Dec; 47(6):462-6. PubMed ID: 14756529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Culture and biodegradation performance for phenol-degrading bacterium in high phenol concentration].
    Lü RH; Fu Q
    Huan Jing Ke Xue; 2005 Sep; 26(5):147-51. PubMed ID: 16366488
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The industrial potential of microbial nitrile biochemistry.
    Wyatt JM; Linton EA
    Ciba Found Symp; 1988; 140():32-48. PubMed ID: 3073061
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradation of Pendimethalin by Paracoccus sp. P13.
    Ni H; Li N; Qiu J; Chen Q; He J
    Curr Microbiol; 2018 Aug; 75(8):1077-1083. PubMed ID: 29675544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectroscopic studies of the interaction between crown ethers and organic nitriles.
    Mosier-Boss PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(3):527-34. PubMed ID: 15582822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.